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Introduction
When learning the decimal expansions of fractions in the base-ten system, the 
fi rst one that seems to be a huge pain is 1/7. Th is decimal expansion is a worst 
case scenario, meaning that there could not possibly be fewer digits involved; we 
say that it has maximal repeating sequence. However, we’ll learn that fractions 
of this type are actual somewhat friendly, in that any m/7, where m is an integer 
such that 0 < m < 7, also has maximal repeating sequence with the digits be-
ing cyclical permutations of the 1/7 case. In dozenal, 1/5 and 1/7 have this same 
maximal repeating sequence property and, for the same reason, have this same 
nice property.

Worst Case Scenario
I will demonstrate how 1/7 is a worst case scenario, or “maximal repeating se-
quence”, because it will come in useful later on.

When dividing one by any number you basically face an infi nite number of zeros 
aft er the decimal. When doing long division you look at the fi rst number, and 
aft er dividing the fi rst zero by the divisor you take the remainder and “carry” it 
or move it front of the proceeding zero (which in decimal means to multiply by 
ten and add. For example:

       0.1     
7 ) 1.000…
       -  7 
          30 

Where, in this case, on the bott om row 3 is the remainder and 0 is the carried 
down digit. Th is paper assumes that the reader knows how to do long division; I 
only provide the detail in case that the reader hadn’t previously considered this 
3 the remainder.

Now, there are very few values possible values for the remainder. Mathemati-
cians will know by the Fundamental Th eorem of Arithmetic and the layman will 
know by intuition, that this remainder cannot be less than zero and that it cannot 
be greater than or equal to the divisor (7 in the example). If the remainder is not 
less than the divisor, then you increment the solution you’ve listed (the 1 in the 
example) until it is.

If you ever get a zero as the remainder, then it is clear to see (when dividing along 
infi nite zeros) that the remaining solutions will be zeros, which we don’t write 
because they’re aft er the decimal. Th is is called a terminating fraction. (Try the 
calculation of 1/8 for an example.) Th e other option is that the remainder has 
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already been encountered in the long division, in which case (since we’re work-
ing along infi nite zeros, that all act the same) it is clear that the solutions would 
simply repeat themselves. Th is is a repeating sequence. We see this in the 1/7 case 
(here I write the remainder as super-scripts to the zeros to save space; the way 
you would see them in subtraction):

      0 . 1  4  2  8  5  7  1  …
7 ) 1 .10 30 20 60 40 50 10 …

Obviously, the patt ern will continue forever.
Since, there is a fi nite option for remainders, then the solution (for fractions 
with one as the dividend) must repeat or terminate. (In fact, it is a well known 
mathematical fact that the decimal expansions of all fractions must repeat or ter-
minate. Th e proof is a generalization of the preceding arguments.) Further an 
expansion of this type (if not terminating) must repeat within m digits aft er the 
decimal place, where m is the divisor. Th at is to say that at most m-1 digits will be 
repeated, since we don’t allow zero to be a remainder (for that would be a termi-
nation), then there are only m-1 unique remainders. Th is produces the maximal 
repeating sequence (our “worst case scenario”).

A Nice Property
It is a fun bit of trivia that every mathematician should 
know that multiples of 1/7 use permutations of the same 
repeating sequence. Th at is to say that the repeated digits 
are the same, but in diff erent order. We show the fi rst six 
digits of the sevenths in decimal in Figure 1 at right.
Th e reader may immediately see why this is. A hint for 
mathematicians is to notice that the permutations are of 
the particular, cyclic type.
Th e proof of this actually quite simple. In the fi rst example, the calculation of 1/7, 
I write the 1 in front of the fi rst zero in the dividend, as though it is the remainder 
when dividing only the digit 1 by 7. (Although, it is usually taught to just start 
the division by looking at the 1 and 0 together for 10, what you’re really doing 
here is just exactly the same “carrying” of the remainder that you’re doing ev-
erywhere else.) But, if instead of a 1 for the fi rst digit there was a 2 or 3 or some 
other number (as it would be in these other fractions), then the fi rst remainder 
would also be this other number.
From there, and because you’re moving along infi nite zeros, the division would 
proceed exactly as it did in the 1/7 case, with the same repeating sequence as well, 
but merely starting at a diff erent place.
If it is not immediately clear why these expansions use the same 6 digits, it may 
be a useful exercise for the reader to calculate a few until he or she can see the 
patt ern on his or her own.

1/7 = 0.142857…
2/7 = 0.285714…
3/7 = 0.428571…
4/7 = 0.571428…
5/7 = 0.714285…
6/7 = 0.857142…

Fig. 1: Decimal Sevenths
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Dozenal
A driving argument for the usage of dozenal is the ease of 
expanding fractions. Th e fractions shown in Figure 2 at left  
have much cleaner and easier expansions in dozenal.
But this argument seems to be weakened by two fractions, 
1/5 and 1/7. One seventh is just as “bad” in base-twelve as it 
is in base-ten, and one fifth seems much worse. However, 
by simply calculating these two dozenally, you can see that 
these both have the property of having a maximal repeating 
sequence, and thus inherit this nice property of just cycli-
cally repeating the same digits.

Th e expansions of the fi ft hs and sevenths in dozenal appear in Figures 3 and 4 below.
What’s So Nice?

“So, what’s so great about the maximal repeating sequence 
property? I still say that 1/7 is the hardest to memorize.” Try 
to memorize your eighths in decimal (1/8 to 7/8, shown in 
Figure 5 below) and you’ll fi nd that you’ll be memorizing 
more numbers than when you memorize the sevenths.
When memorizing the sevenths in decimal (this will work the 
same with the fi ft hs and sevenths in dozenal). You need to fi rst 
memorize 1/7 = 0.142857. It’s not prett y, but it is only six digits. 
Now say you want to recall m/7 on cue. You only need to re-
member the fi rst digit of this expansion, because, as we know, 
the rest cyclically follows the order in the 1/7 case. However, 
this is easy; since the leading digits of the numbers 1/7 to 6/7 
must be in increasing numerical order. (Because, otherwise, it 
would suggest that 2/7 is less than 1/7, for example.)
Say you want to impress your friends by “calculating” 6/7. 
You start by looking at the digits in 1/7: 142857 in numerical 
order: 1 < 2 < 4 < 5 < 7 < 8; since 8 is the 6th smallest here, 
you take that to be the leading digit. Th en you recall the rest 
of 1/7, in order: 0.857142 (Where, upon reaching the “end”, 
or the 7 digit, you just continue from the beginning.)
For example, you might use this method to calculate the 
fi ft hs in dozenal, where 1/5: 0;2497. Which gives you 2 < 4 
< 7 < 9. Th us we obtain the leading digits of the fractions as 
seen at left  below. Adding the remaining digits cyclically, we 
obtain the situation seen at right below:

1/5 = 0;2…
2/5 = 0;4…
3/5 = 0;7…
4/5 = 0;9…

1/5 = 0;2497…
2/5 = 0;4972…
3/5 = 0;7249…
4/5 = 0;9724…

Th us it is easy to recall these seemingly unfriendly fractions. For this reason, 
along with many others, dozenal is a superior counting system.•••

1/7 = 0;186a35…
2/7 = 0;35186a…
3/7 = 0;5186a3…
4/7 = 0;6a3518…
5/7 = 0;86a351…
6/7 = 0;a35186…

Fig. 4: Dozenal Sevenths

1/2 = 0;6
1/3 = 0;4
1/4 = 0;3
1/6 = 0;2
1/8 = 0;16
1/9 = 0;14

Fig. 2: Some Dozenal 
Terminating Fractions

1/5 = 0;2497…
2/5 = 0;4972…
3/5 = 0;7249…
4/5 = 0;9724…

Fig. 3: Dozenal Fift hs

1/8 = 0.125
2/8 = 0.25
3/8 = 0.375
4/8 = 0.5
5/8 = 0.625
6/8 = 0.75
7/8 = 0.875

Fig. 5: Decimal Eighths
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Halves
½ ;6

Thirds
⅓ ;4
⅔ ;8
Quarters
¼ ;3
¾ ;9

Fifths
1/5 ;2497‥
2/5 ;4972‥
3/5 ;7924‥
4/5 ;9247‥
Sixths
1/6 ;2
5/6 ;a

Sevenths
1/7 ;186a35‥
2/7 ;35186a‥
3/7 ;5186a3‥
4/7 ;6a3518‥
5/7 ;86a351‥
6/7 ;a35186‥
Eighths
1/8 ;16
3/8 ;46
5/8 ;76
7/8 ;a6

Ninths
1/9 ;14
2/9 ;28
4/9 ;54
5/9 ;68
7/9 ;94
8/9 ;a8

Tenths
1/a ;1•2497‥
3/a ;3•7249‥
7/a ;8•4972‥
9/a ;a•9724‥
Elevenths
1/b ;1‥ 6/b ;6‥
2/b ;2‥ 7/b ;7‥
3/b ;3‥ 8/b ;8‥
4/b ;4‥ 9/b ;9‥
5/b ;5‥ a/b ;a‥
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 1 ;1  7 ;7
 5 ;5  b ;b

 1 ;0b‥  5 ;47‥  9 ;83‥
 2 ;1a‥  6 ;56‥  a ;92‥
 3 ;29‥  7 ;65‥  b ;a1‥
 4 ;38‥  8 ;74‥ 10 ;b0‥
 1 ;0•a35186‥
 3 ;2•6a3518‥
 5 ;4•35186a‥
 9 ;7•86a351‥
 b ;9•5186a3‥
11 ;b•186a35‥
 1 ;0•9724‥  8 ;6•4972‥
 2 ;1•7249‥  b ;8•9724‥
 4 ;3•2497‥ 11 ;a•4972‥
 7 ;5•7249‥ 12 ;b•2497‥

 1 ;09  9 ;69
 3 ;23  b ;83
 5 ;39 11 ;99
 7 ;53 13 ;b3

 1 ;085792 14b364 29a7‥
 2 ;14b364 29a708 5792‥
 3 ;214b36 429a70 8579‥
 4 ;29a708 579214 b364‥
 5 ;36429a 708579 214b‥
 6 ;429a70 857921 4b36‥
 7 ;4b3642 9a7085 7921‥
 8 ;579214 b36429 a708‥
 9 ;6429a7 085792 14b3‥
 a ;708579 214b36 429a‥
 b ;79214b 36429a 7085‥
10 ;857921 4b3642 9a70‥
11 ;9214b3 6429a7 0857‥
12 ;9a7085 79214b 3642‥
13 ;a70857 9214b3 6429‥
14 ;b36429 a70857 9214‥

1 ;08  b ;74
5 ;34 11 ;88
7 ;48 15 ;b4

 1 ;076b45‥  a ;639582‥
 2 ;131a8a‥  b ;6b4507‥
 3 ;1a8a13‥ 10 ;76b450‥
 4 ;263958‥ 11 ;826395‥
 5 ;31a8a1‥ 12 ;8a131a‥
 6 ;395826‥ 13 ;958263‥
 7 ;45076b‥ 14 ;a131a8‥
 8 ;5076b4‥ 15 ;a8a131‥
 9 ;582639‥ 16 ;b45076‥

 1 ;0•7249‥  b ;6•7249‥
 3 ;1•9724‥ 11 ;7•9724‥
 7 ;4•2497‥ 15 ;a•2427‥
 9 ;5•4972‥ 17 ;b•4972‥

 1 ;0•6a3518‥  b ;6•35186a‥
 2 ;1•186a35‥ 11 ;7•5186a3‥
 4 ;2•35186a‥ 14 ;9•186a35‥
 5 ;2•a35186‥ 15 ;9•86a351‥
 8 ;4•6a3518‥ 17 ;a•a35186‥
 a ;5•86a351‥ 18 ;b•5186a3‥

 1 ;0•6‥ 11 ;7•1‥
 3 ;1•7‥ 13 ;8•2‥
 5 ;2•8‥ 15 ;9•3‥
 7 ;3•9‥ 17 ;a•4‥
 9 ;4•a‥ 19 ;b•5‥

1/7  featured
fi gures

Building on Mr. Gaff ney’s examination 
of dozenal fractions, we thought about 
other such fractions. Here we explore these 
for you, fi rst examining the fi rst one dozen 
ten reciprocals and their unique multiples. 
In the tables below, all reciprocal multiples ignore zero in the unit place 
or “integer part” of the fi gure. Each reciprocal multiple appears in one of 
three states. Th e fi rst state terminates, like ⅔ = ;8. Th e second state repeats 
aft er the unit point, like 2/5 = ;4972‥ , the repetition indicated by ellipsis 
(‥). Th e last is a repeating series aft er an initial quantity of digits, like 5/12 

= 0;4•35186a‥, the repeating 
series appearing here between a 
vertical series of dots (•) and the 
ellipsis. Th e reciprocals of b and 
11; are fun. Do you recognize 
their patt erns? One dozen fi ve 
displays the behavior Mr. Gaff -
ney described for fi ft hs and one 
sevenths. Can you explain some 
of the patt ern changes that hap-
pen, say, in the multiples of the 
reciprocal of 17; (19.)? •••


