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Welcome to a new “duodecade” of your Duodecimal Bulletin! In honor of this ten 
dozenth issue of the Bulletin, we’ll examine the number dek-do and other highly com-
posite numbers of its ilk. Our Germanic forefathers knew ten dozen as the “great” or 
“long hundred”, we’ll read about our Society’s encounter with this concept in a couple 
reprints of our accounts of Danish native Jens Ulff-Møller’s visit with us in the eighties. 
Australian Wendy Krieger contributes a few items on the number she affectionately calls 
“twelfty”. Bill Lauritzen, a Californian teaching in southern China, introduces us to the 
concept of “versatile numbers”. Finally, we’ll examine the dozenal division of a circle 
and compare it to the decimal 360-degree system.

The last mentioned article, on measurement and number base, introduces a depart-
ment we’ll introduce across some of the next dozen issues looking into various systems 
of dozenal measure. We’re planning to examine Tom Pendlebury’s tgm, celebrated in 
the uk, the Manual of the Dozen System introduced by this Society in 1960, and Takashi 
Suga’s Universal Unit System. For this to be successful, we’d like your help. Do you have 
a favorite system? Why do you espouse that system? What qualities appeal to you in a 
system of weights and measure? We’re eager to hear what you have to say.

The Dozenal Society of America is always looking for the participation of its Mem-
bers, because part of being a Society is being social. A few of the Members met in De-
cember 2010 in New York for dinner and conversation. Consider joining us in June at 
Nassau Community College for our Annual Meeting. There are plenty of dozenal doings 
to partake in across the year. Some of you may be particularly motivated to contribute 
articles to this Bulletin, or your own ideas to our website. All our work is volunteered, so 
we certainly appreciate any contribution you can make. If you think something could be 
done better, please lend a hand. We appreciate your Membership, because your partici-
pation and your dues help keep this Society moving forward.

I hope you enjoy this ten dozenth issue of the Duodecimal Bulletin. We’ve tapped con-
tributors far and wide for their thoughts; I do hope these stimulate your own thoughts. 
The Society looks forward to seeing you in New York City this summer! •••

president’s
 message

•

• • Symbology & Nomenclature • •
The DSA does NOT endorse any particular symbols for the digits ten and eleven. For 
uniformity in publications we use Dwiggins dek (A) for ten and his el (B) for eleven. 
Whatever symbols are used, the numbers commonly called “ten”, “eleven” and “twelve” 
are pronounced “dek”, “el” and “dough” in the duodecimal system.

When it is not clear from the context whether a numeral is decimal or dozenal, we use a 
period as a unit point for base ten and a semicolon, or Humphrey point, as a unit point 
for base twelve. Thus ½ = 0;6 = 0.5, 2⅔ = 2;8 = 2.66666..., 6⅜ = 6;46 = 6.375  •••

The Dozen in 
Daily Life

•  11B7; · GENERAL MEMBERSHIP MEETING · 2011.  •

Nassau Community College 
see http://www.ncc.edu/About/directions.htm

2 pm Saturday  
21; June 11B7; 
(Saturday 25. June 2011.) 
Location to be determined
Come on out and join us!
Some items we plan to discuss:
• Dozenal Doings
• The dsa Website and Archive
• The Duodecimal Bulletin:
	 ▶ Vol. 50; № 1 — Celebrating the Long Hundred

We’ll discuss the past issues since the 11b6; Meeting  
and any feedback they’ve generated.

	 ▶ Vol. 50; № 2 — Music and the Dozen
The latter 11b7; issue or one thereafter may focus on how the dozen and music 
relate. Come discuss music with us!

	 ▶ The Dozenal System of Measurement Department
Beginning with Vol. 50;, the dsa will discuss and review the currently published 
dozenal systems of measure in a temporary department across the next duodecade 
of issues. We’ll examine Pendlebury’s tgm, the Manual of the Dozen System, 
Suga’s Universsal Unit System, and more.How would you measure in base twelve?

	 ▶ Topics for upcoming issues
• Presentation — to be determined.

Join us for dinner after the Meeting!
•••••   •••••   •••••   •••••   •••••   •••••   •••••   •••••   •••••   •••••   •••••   •••••

If you have dozenal topics, we’d be happy to  
discuss these during and after the meetings!

g 11E7; ·Minutes of the AnnualMeeting · 2011. E
21; (25.) June 11E7; (2011.)

DSA BoardMeeting was called to order at about 2:00 PM.
The Board noted that long-time DSA stalwart Alice Berridge died at E;00 this very

morning. She was active in the DSA from day one. Over the years Alice served as Vice
President, Secretary, and Treasurer of the Society. She also worked on many committees:
Nominating, Meeting, and Awards to name a few. She educated people about dozenal
counting and promoted the DSA tirelessly among her family and friends. Her presence
will be sorely missed by one and all.

The Treasurer, Jay Schi�man, reported positive growth in both DSAmembership
and in DSA investments from 2010–2011.

The Outreach and Education Committee will consist of Secretary Jen Seron, plus
volunteers frommembership.

The slate of o�cers proposed by theNominating Committee consisted of the follow-
ing: Board Chair Jay Schi�man, President Michael De Vlieger, Vice-President Graham
Steele, Treasurer Jay Schi�man, Secretary Jen Seron. There being no other nominations,
the Chair was directed to cast one vote for the slate. Michael De Vlieger was reappointed
Editor of our Bulletin. Gene Zirkel was appointed Parliamentarian to the Chair.

The BoardMeeting was adjourned unanimously at 3:45 PM.
Annual Meeting of the Dozenal Society of America was called to order around 3:15

PM
At the general membership meeting:
The DSA’s incorporation documents need to updated to align with NY State non-

pro�t 501C law. President Michael De Vlieger reported on the amendment of corporate
documents to accommodate changes inNY State incorporation law. These amendments
will put us in compliance with that law. This amendment was approved unanimously.

President De Vlieger reported on the tra�c of the recently revised and updated DSA
website. Old copies of the Bulletin are now available online.

Vice-President Graham Steele has set up a Facebook site, and President De Vlieger
has set up a Twitter account.

The Board of Directors Class of 2014. was elected as follows:
Michael DeVlieger
Jen Seron
Brian Ditter
Donald Goodman

A lively discussion of dozenal ideas was led by Brian andMike. All joined in. Then
the members retired to a nearby restaurant for supper and more discussion.

Volume 50; Number 1; Whole Number χ0; four4;
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Although we teach students what prime numbers are, there is another class of numbers 
that is just as important as prime numbers that we do not teach students. I call these 
versatile numbers.  

A versatile number is a number that has more factors than any smaller number. The first 
versatile numbers are: 

2, 4, 6, 10, 20, 30, 40, 50, a0, 130, 180, 260, 500, 5a0, 890, b80, 1560, 2b00…
Figure 1: The Highly Composite Numbers (hcn), Sloane’s oeis: a002182.

The British mathematician, Hardy, called these numbers, “as un-
like a prime as a number can be.” However, like primes they are infi-
nite, and like primes they cannot be predicted by any rule.

At the dawn of civilization the Babylonians chose one these num-
bers for their base 50; numeration. They also used some of these 

numbers to divide time and the circle of the heavens. These are still in use today.  I’m 
told by scholar Meyer Rainer, that Plato related some of these numbers to the five regu-
lar (“Platonic”) polyhedra and chose one of these numbers, 2b00;, with which to popu-
late his ideal city-state.  In the last century, (1915. to be more precise), the great Indian 
mathematician Ramanujan, identified these numbers as “highly composite numbers.”  
He calculated them to the eight dozen sixth in the sequence, which is 90b,597,889,000. 
He also proved several interesting things about these numbers. However, despite this 
attention, these numbers have remained relatively hidden from the population, and re-

search into them has been considered off the main-
stream of mathematics.

Unaware of most of this, in 1995., I rediscovered these 
numbers and named them “antiprimes” or “versatile 
numbers.” I discovered that these numbers had the 
property that they facilitate the even sharing 
of things.  Because of this I hypothesized that igno-
rance of this class of numbers has increased 
the amount of violence in the world. Later, I 
realized that  cryptography (secret codes) uses primes 
to keep things hidden. In a like manner, perhaps society 
could use versatile numbers to keep things open. (Be-
fore teaching mathematics I was a psychologist so this 
cross-pollination of thought is not to be unexpected. 

• For a more detailed discussion of these numbers,
visit Prof. Lauritzen’s website at www.earth360.com

I proposed an experiment in which small groups of 
children (of from 2 to 6 individuals, as these are the 
most commonly seen sizes) could be put in a room 
and then given either a versatile 10; or a non-versatile 

b pieces of candy to share. A specially trained observer, 
who knew nothing of the purpose of the experiment, 
would count incidences of hostile aggression among 
the children. I predict that with 5 children there would 
be no difference in the behavior of the children with 
versatile as opposed to non-versatile pieces of candy. 
However, with 2, 3, 4, or 6 children I predict that there 
will be more incidences of hostile aggressive behavior 
with the non-versatile b pieces of candy than with the 
versatile 10; pieces of candy. Try the experiment your-
self and draw your own conclusions. 

(Editor’s Note: See Figure 1 for 10; and Figure 2 
for b students. In the figures, the number of students in 
the “Kids” column divide the number of objects stated 
in the title of the chart. The “Objects” column visually 
displays the number of objects each child receives if 
the total number of objects are divided equally among 
each child. Any fractional object is represented by a 
red “explosion”. The “Objects per Kid” column gives 
the dozenal equivalent of the total number of objects divided by the number of equally-
sharing kids shown in the leftmost column of the same line. Stars at the leftmost column 
indicate an integral number of objects can be evenly distributed among the children.)

The experiment could be repeated with a versatile 10; versus a non-versatile a pieces of 
candy. (See Figure 3). In this case I predict a) no difference with 2 children, b) less hos-
tile aggression with 5 children and a pieces of  candy, and c) less hostile aggression with 
3, 4, and 6 children with 10; pieces of candy. In other words, there are more opportuni-
ties for hostile aggression with a non-versatile ten than with a versatile dozen. Again, I 
leave it to you to do the experiment and then draw your own conclusions about the value 
of the metric system and our decimal number system versus a more versatile measuring 
system and a more versatile numbering system.

Regardless of your conclusions in these controversial areas, I think you will find in your 
daily life many examples where versatile numbers are 
being used intuitively by yourself and others already. 
For example, a teacher with a versatile 20; students in 
the classroom can easily divide the students into even 
groups of 2, 3, 4, 6, 8, or 10; students. A teacher with a 
non-versatile 1b; students has no such options. A ver-
satile 20; acre lot can easily and evenly divided up, but 
with a 21; acre lot it is not as easy. Merchants use ver-
satile six-packs, versatile dozens, versatile 10;-20;-30; 
pictures in a roll of film, and so on.

If you study versatile numbers, I think you will 
find even more areas in both your personal life and 
in teaching in which you can use these numbers. I 
think you will find that students that are taught these 
numbers can better apply mathematics. In summary, 
I think you will conclude that knowing versatile num-
bers is of value.

Sharing a Objects
Kids Objects Objects per Kid

1 •••• a

2 •• 5

3 •• 3;4

4 •• 2;6

5 • 2

6 •• 1;8

7 •• 1;5186a3‥

8 •• 1;3

9 •• 1;14

a • 1
Figure 3: Sharing ten objects.

Sharing b Objects
Kids Objects Objects per Kid

1 •••• b

2 ••• 5;6

3 •• 3;8

4 •• 2;9

5 •• 2;249724‥

6 •• 1;a

7 •• 1;6a3518‥

8 •• 1;46

9 •• 1;28

a •• 1;124972‥

b • 1
Figure 2: Sharing eleven objects.

Sharing 10; Objects
Kids Objects Objects per Kid

1 •••• 10

2 •• 6

3 •• 4

4 • 3

5 •• 2;49724‥

6 • 2

7 •• 1;86a351‥

8 •• 1;6

9 •• 1;4

a •• 1;24972‥

b •• 1;111111‥

10 • 1
Figure 1: Sharing a dozen objects.
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MOVE OVER PRIMES—
Versatiles Are Here!

by Bill Lauritzen

They  
facilitate the 
even sharing 
of things.
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№ Factors σ

1 1 × 1 1

2 1 × 2 2

3 1 × 3 2

4 1 × 4, 2 × 2 3

5 1 × 5 2

6 1 × 6, 2 × 3 4

7 1 × 7 2

8 1 × 8, 2 × 4 4

9 1 × 9, 3 × 3 3

a 1 × a, 2 × 5 4

b 1 × b 2

10 1 × 10, 2 × 6, 3 × 4 6

11 1 × 11 2

12 1 × 12, 2 × 7 4

13 1 × 13, 3 × 5 4

14 1 × 14, 2 × 8, 4 × 4 5

15 1 × 15 2

16 1 × 16, 2 × 9, 3 × 6 6

17 1 × 17 2

18 1 × 18, 2 × a, 4 × 5 6

19 1 × 19, 3 × 7 4

1a 1 × 1a, 2 × b 4

1b 1 × 1b 2

20 1 × 20, 2 × 10, 3 × 8, 4 × 6 8

21 1 × 21, 5 × 5 4

22 1 × 22, 2 × 11 4

23 1 × 23, 3 × 9 4

24 1 × 24, 2 × 12, 4 × 7 6

25 1 × 25 2

26 1 × 26, 2 × 13, 3 × a, 5 × 6 8

27 1 × 27 2

28 1 × 28, 2 × 14, 4 × 8 6

29 1 × 29, 3 × b 4

2a 1 × 2a, 2 × 15 4

2b 1 × 2b, 5 × 7 4

30 1 × 30, 2 × 16, 3 × 10, 4 × 9, 6 × 6 a
Figure 4.
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When I posted information on versatile numbers 
to the “sci.math” newsgroup on the Internet, I re-
ceived more e-mail than I could easily keep up with. 
In St. Petersberg, Russia, teacher Roman Breslav 
held a Versatile Number Day in the Math Center of 
the Palace of Youth Creativity. 

There may be better ways to teach versatile num-
bers than the following, but so far this is the best 
method I have discovered. Simply have the students 
make a factor table like Figure 4.

I find that it works well to let a different student 
come to the board and fill in a row. When we get to 6 
rows we erase it and start on the next 6 rows. When-
ever a number has only 2 factors it is of course a 
prime and could be circled. Whenever the “number 
of factors” (marked by “σ” in the chart for brevity) 
goes higher than all the previous numbers of factors, 
a star () could be placed next to the number to 
mark a versatile number.  Students can make this 
table, depending on their grade level, to two dozen 
or higher. I have had many middle school students 
make it up to five dozen. High school students could 
make it up to 120, or, if they are advanced enough, 
they can write a simple computer program that will 
go much higher.  

As you are making this table with the students you 
can ask them questions like:  

1) Which has more factors? a or 10;?  (You 
may be surprised to find  how many students 
say a even though the evidence is right in 
front of their noses.)  
2) Which has more factors? 10; or 13;?
3) Which has more factors? 20; or 21;? 
4) Why do you think we have 10; hours on 
the clock instead of a? 
5) Why do you think we have 20; hours in a 
day instead of 21;? 
6) Why do you think we have 50; minutes in 
a clock instead of 42;?  

In summary, I think the use of these numbers can 
lubricate social interaction in an increasingly popu-
lated and tense world. In my opinion, widespread 
knowledge of these numbers may never before have 
existed in the history of human civilization. Whether 
these numbers will remain hidden from the general 
public, or will become a part of our standard cur-
riculum, remains largely in your hands. •••

History Professor Speaks to DSA Members
Reprint (Originally published in Vol. 34; №. 2 wn 68; pages 16;–17; )

On Tuesday, 12; May 119b;, on very short notice, history professor Jens Ulff-Møller 
from Copenhagen conducted a brief but interesting seminar at Nassau Community 
College on the history of counting and measuring. He was returning home to Denmark 
from the 26th Annual Congress on Medieval Studies held at Western Michigan Uni-
versity in Kalamazoo, where he spoke and also organized two sessions of a half dozen 
speakers. We were indeed fortunate to secure his presence as he spoke about a variety of 
topics relating to medieval counting and measurement.

It was very interesting to learn of the difficulties historians and linguists had in deci-
phering such phrases as ‘a year had three hundred and five days’. The problem is not that 
our ancestors used shorter years, but rather they used longer ‘hundreds’.

According to Professor Ulff-Møller, many people used a hundred containing dek doz-
en units. We refer to this today as the long hundred, and differentiate it from the narrow 
hundred of only eight dozen and four units. (You may recall the long ton of 2240* — 
rather than 2000 — pounds, still in use today.)

In the middle ages, most numbers were written out, and algorithms for operations 
were not easy to come by, division being an especially vexing problem. This led people 
to desire that the number of partitions in a given unit of measurement be highly factor-
able and hence — the long hundred of dek dozen units. It divides evenly by {1, 2, 3, 4, 5, 
6, 8, a, 10, 13, 18, 20, 26, 34, 50, a0}.

Plato’s perfect world may have led academicians to prefer the regularity of either dek 
times dek or do times do as the number of subdivisions of a measurement, but the com-
mon people did things for convenience and the result was the long hundred.

This preference for convenience over standardization may be the reason we had so 
many hybrid combinations of partitions of our units of measurement. (These were to 
be found on the back cover of our black and white notebooks in grammar school.) A 
preference for convenience may also explain the present resistance to being forced to 
adopt the awkward decimal metric system. People everywhere seem to demand halves 
and then thirds and/or quarters in their measurements in order to avoid fractions of 
units as much as possible.

We tend to think of things being codified and universal. However many measurements 
were regional and things were written differently in different localities. Thus we find Roman 
numerals not quite as standard as we were taught in elementary school. For example:

iv is not the only four — iiii was also used. Two hundred appears as ii hundred as well 
as cc. But sometimes cc stands for two long hundreds! vxx is found as denoting 5 times 
20 and vi is used for six thousand.

The reader who is not aware of these variations would have difficulty in attempting to 
decipher the meaning of some passages in medieval texts.

To some extent, it appears that the popular culture preferred the long hundred while 
the narrow hundred prevailed in sacral use.

Professor Ulff-Møller is due to return to the States in November. We hope to be able 
to announce a date when he will speak to us again, and we trust that you will have the 
opportunity to hear him. Don’t be surprised if you read that:

100 fish = 6 score fish, 3 (units) of fish = 100, and 1(unit) = 40. •••
* In the original article at 34216;, Prof. Zirkel wrote 2400 rather than 2240 pounds to the long ton. 



9; nine	 The Duodecimal Bulletin Volume 50; Number 1; Whole Number a0;	 ten a;

A Dozen Decades
A Report on a Lecture About Long Hundreds and Historical Methods

Reprint (Originally published in Vol. 35; №. 1 wn 6a; pages 11;–12;)

• All numbers are decimal in this article.

On Thursday [7 November 1991], the Dozenal Society of America, in conjunction 
with the departments of Mathematics/Computer Processing/Statistics, and of 

History at Nassau Community College (li) sponsored a lecture by Jens Ulff-Møller, PhD 
candidate from the University of Copenhagen. Last year, Jens, on very short notice, gave 
a brief presentation which touched upon some of the problems translators face when 
trying to interpret numerical data in medieval documents, especially as they relate to the 
‘long hundred’. He cited texts from the fifth, eighth, and even the seventeenth century.

Expanding on his previous talk, this lecture acquainted us with some of the methods 
researchers use to clarify the meaning of numbers in texts.

Using overhead transparencies to illustrate many points, Jens spoke about the confu-
sion caused by words like ‘hundred’ or ‘thousand’ when translating early documents. It 
seems that our ancestors sometimes used such words to mean 100 and 1000, and at other 
times they meant 120 and 1200. Today these are called the short hundred or thousand, 
and the long hundred or thousand, respectively.

He explained that sometimes an author used expressions such as ‘one hundred twelve 
count’. In these cases, it is easy for the translator to recognize that the number is one 
dozen decades, and not ten squared. Of course, the reason a writer would so modify the 
word ‘hundred’ is because the readers were aware of two different uses of the word and 
they would need the clarification to comprehend what was being said.

In other instances there are internal messages such as a reference in an Icelandic 
manuscript to “One hundred men served as soldiers; eighty stayed and forty left.” (Jens 
pointed out that the translators not aware of the common use of the long hundred might 
mistakenly conclude that this was an arithmetic error!)

Similarly, in another place we find a citation that refers to fifteen score, one quarter of 
a thousand, or 300 — a confusing mixture of long thousand with short hundred. (A long 
thousand of 1200 is one dozen short hundreds or ten long hundreds).

He explained some of the ways that historians attempt to decipher perplexing num-
bers in a document, including the fact that many times there may be no way to figure out 
which ‘hundred’ was meant.

One method that can be used to decipher the author’s meaning is to find references to 
known quantities such as the 532-year Easter cycle in the Icelandic text, Alfredi:Rimtol. 
This cycle has been variously referred to as:

a.) Four hundred twelve-counted, and two on the way to sixty. This is equivalent to 4 
× 120 + 50 + 2, as ‘on the way to sixty’ means counting in decades, passing the 
previous decade of fifty, but not yet reaching sixty.

b.) Four hundred twelve-counted and forty and one dozen, or 4 × 120 + 40 + 12.

c.) Two on the way to forty on the way to six hundred. 2 + 30 + 500. As before, ‘on the 
way to forty’ means 30, while ‘on the way to 600’ indicates 500.

 

In most texts numerals were not used, but the words for numbers were written out. No-
tice that in (a) and (b) the long hundred is used, but in (c) it is the short hundred.

In another place a year is referred to as ‘ccc nights and v nights’. In both England 
and in Scandinavia, the Roman numeral c was used ambiguously for both types of hun-
dreds. In this case, it refers to 3 × 120 + 5 or 365 nights in a year. (Again, the translator 
who is ignorant of the use of c to sometimes represent the long hundred, might errone-
ously conclude that the author didn’t know the correct length of the year.)

In the discussion that followed Jens’ provocative talk, an analogy was made to our 
present use of the word ‘ton’. There is the long ton, the short ton, the metric ton, and a 
couple of nautical tons that measure volume rather than mass!

Jens pointed out that logical people, particularly the Germanic tribes, would prefer 
to count and measure with a unit and then a unit squared, that is — either 10 and 100 or 
else 12 and 144. However, our ancestors were not always logical. Sometimes they were 
just practical. They couldn’t calculate very well, and division was especially difficult. Ten 
as a unit most probably comes from the biological accident that we have ten fingers. 
However, one third of 100 or of 1000 is not convenient — hence they devised the long 
hundred and the long thousand.

Jens noted that our four fingers have three joints, and so hand counting is just as easy in 
duodecimals as in decimals with the added factor that one can count up to one dozen by 
using the thumb as a pointer. Of course, the reason that twelve is so often used is the fact 
that it has many factors, and hence division can be performed without using fractions.

All in all the lecture was informative and interesting, and we have learned to sympa-
thize with some of the difficulties with which the historian is faced. We thank Jens for 
sharing the efforts of his doctoral research with us. •••

• Alice Berridge & Gene Zirkel

David Rothstein, Prof. Gene Zirkel, Jens Ulff-Møller, and Prof. Alice Berridge shortly after the lecture on 
our forefathers’ use of long hundreds and long thousands.

•  •  •  •  •  •  •  •  •  • 

“Each one Teach One.” • Ralph Beard, dsa Founder
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•  •  •  •  •  •  •  •  •  •  •  •

problem from last issue:

• Solution on page 29;

by Gene Zirkel

FTQ NQEF MDSGYQZF RAD NMEQ FIQXHQ AHQD NMEQ 

FQZ UE M XAAW MF FTQ RDMOFUAZMX QJBDQEEUAZ 

RAD 1/3 UZ NAFT NMEQE. •••

In a cryptogram, each letter has been replaced by a dif-
ferent letter. To solve the puzzle, one must recover the 
original lettering.

Great Hundred

[The great hundred] still measures quantities of fish, even in Germany, where it is 
used for other things as well. In Lübeck there was a Hundert Bretter = 120 items = 10 
Zwölfter (“twelves”) or, as they said in Mecklenberg, 10 Tult. English differentiates be-
tween the long hundred of 120 units and the short hundred which has only 100. Today, 
however, we recognize “hundred” only in its meaning of 100.

The northern Germanic region, primarily Iceland, was the home of the great hundred; 
there hundraþ meant 120 in all monetary calculations and in designating military units, 
until the introduction of Christianity around the year 1000. Thereafter it came to stand  
for the small hundred of 100 in ecclesiastical and learned writings, and the two hundreds 
were sometimes, but not always, distinguished as the 10-(ti-roed) or the 12-(tolf-roed). A 
writer around the year 1250 once designated the 360 days of the year in the old manner: 
IIIc daga tolfroed — “three hundred days by the 12-count,” and commented: “Neverthe-
less in the book language (Latin) all the hundreds are reckoned by the ti-count (oll hun-
draþ tiroed), which according to the proper count is IIIc tiroed ok LX daga.”

We may well ask why the writer did not simply use the 100 for corresponding to tio ti-
ger, “10 tens” — in this case “36 tens” — which our number sequence provides? Because 
it means ten tens in a 12-count gread hundred enumeration, but not 100 as such. We can 
understand this better if we read from an Old Norse tax roll:

“Whoever has property worth 1 ten shall pay 1 ell of wadmal;
“Whoever has property worth 2 tens … etc.; then
“Whoever has property worth halft-hundraþ (6 tens) shall pay 4 ells …
“Whoever has property worth tio-tiger (= 10 tens) shall pay 6 ells.”

Thus tio tiger meant 10 tens in the 12-count hundred system of counting, not an “inde-
pendent” 100; tio tiger ok þriu hunderaþ is 460 = 10´10 + 3´120. […]
The standard of values was originally

1 hundraþ silfrs = 120 ounces of minted silver = 2400 ells of [wadmal] frieze-cloth, 
whence 1 ounce of minted silver = 20 ells of frieze-cloth…

The Number Twelve as the Basic Unit of the Great Hundred

[…]Charlemagne’s monetary standard of the year 780, which had a lasting influence 
on medieval European coinage, clearly embodied the basic 12-unit:

(Latin) 1 libra or talentum = 20 solidus = 12 denarius; 
1 pound of 20 shillings each of 12 pennies = 240 pennies, or 
1 pound = 8 long (Bavarian) shillings of 30 pennies each = 240 pennies, but also: 
1 pound = 12 ounces of 20 pennies each = 240 pennies. 

In France the table of equivalents was: 
1 livre of 20 sou (<solidus) of 12 denier (<denarius) each = 240 denier, whence the 
sou also came to be called a douzain, a “twelver”.

Menninger on the “Great Hundred”
Karl Menninger, a German historian, wrote Zahlwort und Ziffer in 1957–58, which was 
translated into English in 1969, and is now available from Dover as Number Words and 
Number Symbols. It is a magnificent, authoritative, and often-cited examination of the 
historical development and use of numbers across civilization. Among many other top-
ics, Menninger examines the “great hundred” of 120 units, which he further explains 
was divided into dozens in northern Europe in the middle ages. Here are a few of his 
thoughts on the subject:

The various fines and penalties imposed under old Germanic law refer to a basic num-
ber: in the Alemannian, Bavarian, Friesian, Saxon, and Burgundian tribes this was 12, in 
Frankish law it was usually 10, and among the Lombards it was 12 for inflicting wounds 
or injuries and 10 for other infractions. In the Lex ripuaria, the code of the Ripuarian 
Franks, a stallion, a coat of mail and a hunting falcon were valued at 12 solidi; a helmet 
at half this amount, or 6 solidi; a sword with its scabbard at one third, or 4 solidi; a cow, 
a mare, and a sword without its scabbard at one fourth, 3 solidi; an ox, and a shield and 
lance at one sixth, or 2 solidi.

In Lex salica, the law code of the Salian Franks, a fine was once specified thus:
unum tualepti / sunt denari CXX / culpabilis iudicetur, “the guilty one is sentenced 

to pay a Twelve, that is 120 pennies” — a document which again bears witness to the 
number 12 as the basic unit of the great hundred.

The importance of this number [twelve] in the daily lives of common people, in com-
mercial transactions, and in legal affairs, is probably due to its easy divisibility in so many 
ways. The commonly used fractions of the tylft or the shilling could all be expressed in 
terms of whole numbers of pennies:

1 ½ ⅓ ¼ ¾ ⅔ of a shilling
12 6 4 3 9 8 pennies

For this reason the north European tylft is an original, mative measure, and not one that 
was first brought in by way of the Carolingian coinage system. For, quite apart from its 
ready divisibility, it was also consistent with the Roman pattern in the table of ounces.

•
Karl Menninger’s work in this book explores the earliest human thoughts on num-

ber, from tally sticks to concepts of number groupings, from pre-Columbian America 
to the Fertile Crescent, to the far east. It is well-illustrated, and easy to understand. The 
only negative aspect of the 480-page 6½" × 9¼" paperback is that it largely ignores Af-
rican experiences with number. Number Words and Number Symbols is highly recom-
mended for anyone interested in how humanity uses numbers as tools. •••

Menninger, Karl. Number Words and Number Symbols: A Cultural History of Numbers. 
(P. Broneer, Translator). Mineola, ny: Dover, 1992. [1st ed. 1969, Cambridge, ma: mit 
Press], pages 154–158, “Babylonian influence: Great hundred, The number twelve as the 
basic unit of the great hundred.”
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The Duodecimal Circle

The Duodecimal Circle and Time
In the measurement of time and angle, the greatest simplicity is attained by using 

the circle and the day as the fundamental units, and the lesser division as duodecimals 
of these. In this way no conversion is necessary between minutes of time and minutes of 
angle. Time and longitude are expressed by the same number. The superscript (c) can 
replace the degree (°) symbol.

units
(dozenal) (decimal)

;1c is called the duor = 2 hours or 30°
;01c temin 10 minutes 2° 30'
;001c minette 50 seconds 12' 30"
;0001c grovic 4.16⅔ seconds 1' 2½"

key trigonometric functions
angle (θ) 0;1c 0;16c 0;2c

sin θ ½ ¹/√₂ √³/₂
cos θ √³/₂ ¹/√₂ ½
tan θ ¹/√₃ 1 √3

• Figure 1, Remastered from material in the  
Manual of the Dozen System, pages 28;–29;

A key consideration in the establishment of any 
number base is measurement. What will be the basis of a new 

system of measurement? This is a large topic, because of this, let’s focus on 
a relatively simple part of it. In this article, decimal units are preceeded by decimal fig-
ures, dozenal units by dozenal figures.

In general, there seem to be two modes of measuring the world. The first method sets 
up a base unit (the king’s foot, the cubit, the number of wavelengths of light emitted by an 
unstable isotope) then concatenates this unit across the object to be measured until the 
number of units can be counted. The base unit is usually more or less arbitrary. In the first 
case, the civilizational number base will simply be applied, bundling the quantity accord-
ing to that base. If the boat is the square of a dozen cubits long, and you’re in a decimal 
culture, you’ve got 144 cubits; if a sexagesimal culture, you have 2 sixties and two dozen 
units. The challenge rests mostly in selecting a stable and reproducible base unit.

A second method takes into account that there is a more or less undeniable mas-
ter unit (the day, the circle), then divides the master unit into aliquot parts which will 
serve as secondary units. Because we are dividing a master unit into aliquot parts, this 
method tends to use a highly factorable number to arrive at an arrangement friendly to 
the commonest fractions. In a later article we’ll explore this more deeply.

For now, let’s examine the easiest case of the second method. How should we divide 
the circle, given a dozenal number base? The Founders of the dsa explored this question, 
as have many others. In the Manual of the Dozen System on page 28; and 29;, we are pre-
sented with “The Duodecimal Circle”, which then serves as the basis for that document’s 
exploration of trigonometry. The unit circle is divided into a dozen “duors” (two hours 
of astronomical right ascension, 30°, or π/6 radians). The duor is divided into a dozen 
“temins” (ten minutes of astronomical right ascension, 2½°, or π/₇₂ radians).

Being new to dozenals, I encountered the Duodecimal Circle on my own in 1983 and 
later in 2003, and felt skeptical about a purely dozenal division of a circle. In our decimal 
civilization, we use a three hundred sixty degree circle. Trigonometry classes and cer-
tain calculations use radians. Why use a dozenal measurement, when no one in history 
aside from us dodekaphiles seems to have arrived at a circle divided dozenally? On the 
internet a few years back, I read an assertion by a hexadecimal proponent that claimed 
dozenal proponents often construct studies that artificially uplift the dozen over ten or 
sixteen to further their case for dozenal. In the case of the division of a circle, we’ll start 
from the beginning to try to avoid this bias. We’ll see the most useful angles are geo-
metrically determined. Their geometric utility demands human acknowledgement.

Dozenalists and proponents of hexadecimal and octal will agree that multiplication 
and division by factors of two are of utmost importance. We depart from accord when 
proponents of binary-power bases assert that two is the only important factor.

We begin by examining the simple fact that a circle can be produced by fully rotating 
a line segment in a plane about one of its points (see Figure 2A). Such a unit circle is the 
basis for all measurements of angle.

The first regular (two-dimensional) polygon many people will think of is the square, 
which can be made by propagating a line of a given length ℓ in a direction perpendicu-
lar to its length for the same length ℓ (See Figure 2C). The resultant figure has four 
equal sides with four equal, right angles. This figure can be rotated so that exactly 4 
such figures contain the circle in Figure 2A—such a circle possesses a radius of ℓ. The 
square can be copied and tiled to fill up an infinite (Euclidean) two-dimensional plane. 



13; one dozen three	 The Duodecimal Bulletin Volume 50; Number 1; Whole Number a0;	 one dozen four 14;

1 unit

45°–30°=15°

30°

30°

60° 45°

45°

90°

45°

90°

1 unit

1 unit

1 unit

1 unit

1 
un

it

1 
un

it

1 
un

it

Figure 2A. The unit circle, a circle 
with a radius of one unit of mea-
sure. This is the basis for this study 
of important angles.

Figure 2B. The equilateral triangle.

Figure 2D. Bisecting the equilateral triangle.

Figure 2F. One half of the equilateral triangle.

Figure 2H. Difference between Figures 2F and 2G.

Figure 2C. The square.

Figure 2E. Bisecting the square.

Figure 2G. One half of the square.

Figure 2J. Drafting triangles.

Graph paper demonstrates that the tiling of squares can be very handy. The Cartesian 
coordinate system with its familiar x and y axes, the street grids of cities like Chicago 
and Phoenix, the arrangement of columns in a big box store, all employ orthogonal ar-
rangements of elements. Most of the built environment is based on the right angle. Our 
homes, offices, factories, streets, and cities commonly employ orthogonal geometry. 
Thus the right angle, a division of the circle into quarters, an angle of 90° (π/₂ radians), is 
perhaps the most important division of the circle in everyday life.

The simplest regular polygon is a triangle, shown by Figure 2B. We can construct 
a triangle having three sides of equal length and three corners with the same angles, 
thus an equilateral triangle, simply by placing a compass at one end of a line, drawing a 
circle as in Figure 2A, then doing the same at the other end. We can draw straight lines 
from the intersections to both ends of the first lines to obtain a triangle. An equilateral 
triangle, if we were to copy it and cut it out, can be used to fill the circle in Figure 2A: 
exactly six equilateral triangles with a common vertex can fill the circle. In fact, we can 
tile the equilateral triangle to fill up an infinite plane just like the square. We can make 
equilateral triangle “graph paper”. In trigonometry, the cosine of 60° (π/₃ radians) is 
exactly ½. Because the equilateral triangle is the simplest regular polygon, because it can 
fill two-dimensional planes, and because precisely 6 equilateral triangles can fill a circle, 
it follows that such a 3-sided figure is important. Its geometry is thus important. The 
angles we’ve generated are all 60° (π/₃ radians), 1/₆ of a full circle. So dividing a circle into 
six equal angles is an important tool.

We can observe the importance of triangles in general and equilateral triangles in par-
ticular in our everyday society. Structural engineers design trusses, bar joists, and space 
frames with an equilateral arrangement, because the equilateral triangle is the stablest 
two-dimensional figure. Because its sides are equal, it can be mass-manufactured. The 
equilateral triangle is perhaps not as apparent as arrangements made with right angles 
(orthogonality), but it is important in the building of our everyday structures.

For the sake of this article, we’ll call the equilateral triangle and the square “cardinal shapes”.
Figures 2D and 2E show these cardinal shapes bisected (cut in half). There are three 

ways to bisect an equilateral triangle using one of its points, which are congruent if we 
rotate the triangle 120° (2π/₃ radians). There are two ways to bisect a square using one 
of its points, which are congruent if we rotate the square 90° (π/₂ radians). When we 
bisect an equilateral triangle, we obtain a right triangle with angles that measure 30°, 60°, 
and 90° (π/₆, π/₃, π/₂ radians); see Figure 2F. When we bisect a square, we obtain a right 
triangle with angles measuring 45° and 90° (π/₄ and π/₂ radians); see Figure 2G. These 
bisections are important because they relate a corner of an equilateral triangle with the 
midpoint of its opposite side, or the diametrically-opposed corners of a square to one 
another. In trigonometry, the sine of 30° (π/₆ radians) is exactly ½. Thus, 30° and 45°, 
one dozenth and one eighth of a circle, respectively, are of secondary importance. We’ll 
call the bisected equilateral triangle and the diagonally bisected square the “bisected 
cardinal shapes” for the sake of this article.

Figure 2H shows that the difference between the bisecting angles of the cardinal 
shapes is 15° (π/₁₂ radians), one two-dozenth of a circle. Using 15° or one two-dozenth of 
a circle as a snap-point, one can construct any incidence of the bisecting angles of a square 
or equilateral triangle. In fact, before the advent of computer-aided design and drafting 
(cadd), draftsmen commonly used a pair of “45°” and “30°–60°” drafting triangles (see 
Figure 2J), along with a T-square or parallel bar precisely to obtain the common angles 
which are two dozenths of a circle. Thus, it is not by dozenalist design but sheer utility 
that the two-dozenth of a circle, or 15° (π/₁₂ radian) angle is deemed important.
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Figure 3. Two drafting triangles (the bisected cardinal shapes) and a parallel 
bar or T-square can be used to construct all basic angles (the two dozen angles 

at 15° or π/12 radian increments). The straight angle at 0° or 180° (0 
or π radians) is constructed using the parallel bar or T-square alone. 

A right angle can be produced using the parallel bar or T-square 
and the perpendicular side of either of the drafting triangles. The 

angles of an equilateral triangle (60° or π/3 radians) or the bi-
sector angles of either the square (45° or π/4 radians) or the 

equilateral triangle (30° or π/6 radians) can be produced 
using a single draftsman’s triangle on a parallel bar. The 

15° (π/12 radian) or 75° (5π/12 radian) angles can be 
produced with both triangles on the parallel bar. If 
the drafting triangles are flipped or mounted on the 
bottom of the parallel bar or T-square, the angles in 
the other quadrants of the circle can be drafted.

To be sure, other regular polygons can be drawn. The pentagon appears in regular 
three dimensional polyhedra, in the dodecahedron and the icosahedron, and in their 
symmetries. Geometrically, it is an important figure, however it cannot tile two dimen-
sional space, and is not in common use in everyday life. The fact that most Americans 
can name precisely one building that is shaped like a pentagon contributes to the case 
that pentagonal arrangements are a curiosity because they are rare. The hexagon is im-
portant: we can see in Figure 2C that the outline of the group of triangles inscribed in 
the left circle is a regular hexagon. Thus the hexagon can tile two dimensional planes. 
Role playing games in the eighties employed the hexagonal grid system. There are some 
curious places (the Nassau Community College campus, the Price Tower in Bartlesville, 
Oklahoma, and other Frank Lloyd Wright buildings) which are arranged in a triangular-
hexagonal geometry. The geometry of the hexagon is corollary to that of the equilat-
eral triangle. There certainly are many regular polygons in use in human civilization and 
apparent in nature, but the commonest and most important geometries appear to be 
linked to the equilateral triangle and the square.

Other angles are important. On a map, we commonly hear “north northwest” or “east 
southeast”, the sixteen partitions of the circle. The 22½° (π/₈ radian) angle, one sixteenth 
of a circle, is important, perhaps more significant than 15° divisions in cartography. The 
sixteenth of a circle shouldn’t be ignored for this reason.

The decimal division of the circle into thirty dozen degrees is a quite handy tool (See 
Figure 4A and 4B). Each of the two dozen angles related to the equilateral triangle and 
the square (let’s call these two dozen angles “basic angles”) are resolved in the system of 
degrees without fractions. The system neatly accommodates fifths and tenths of a circle, 
although these are comparatively rarely used.

Under a dozenal system, we may discover that using a strictly dozenal division of the 
circle, perhaps using “temins” (perhaps abbreviated t) for convenience, neatly accom-
modates all the basic angles as well as the sixteenths of a circle without fractions (See 
Figure 5A and 5B). The basic angles are simply multiples of 6t. The sixteenths of a circle 
are multiples of 9t. If we desire to “unify” the basic and the sixteenth-circles into one 
system, we might regard 3t (7½°, π/₂₄ radian) as the dozenal “basic angle”. We surrender 
the fifths (pentagonal symmetry) and tenths to repeating fractions, but maintain a fairly 
simple measure of the commonest angles. A strictly dozenal division of a circle, as pre-
sented by our Founders, thus appears sound and sufficient for everyday use. •••

A further exploration of division-based measurement will appear in a coming issue.

Figure 4B. A closer examination of some key an-
gles under the degree system. The right angle and 
the square bisector angle are 90° and 45° respec-
tively. The equilateral angle and its bisector are 
60° and 30° respectively. The difference betweeen 
the square and equilateral bisectors is 15°. The 
sixteenth of a circle is 22½° or 22°30'. The fifth of 
a circle measures 72°

Figure 5B. A closer examination of some key an-
gles expressed as temins. The right angle and the 
square bisector angle are 30t and 16t respective-
ly. The equilateral angle and its bisector are 20t 
and 10t respectively. The difference betweeen the 
square and equilateral bisectors is 6t. The dozen-
fourth of a circle is simply 9t. The fifth of a circle is 
24;9724…t, a repeating digital fraction.

Figure 4A. The degree system used in decimal civi-
lization. The system was set up by our forefathers 
under a sexagesimal number base. The system sur-
vives to this day and continues to be used perhaps 
because all the basic angles are represented by 
decimal semiround or round numbers.

Figure 5A. The circle divided into temins, a gross 
temins to a full circle. The unitary relationship to 
the full circle is maintained, the notation for each 
of the basic angles is simpler, and the number of 
radians can be quickly determined by dividing the 
temins by six dozen, then multiplying by π.

Notes for Figures 4 & 5: The unit circles shown here are drawn so that the black tickmarks are the length 
of the reciprocal of their denominator. Thus the tickmark at ½ circle is ½ unit long, those at ⅓ and ⅔ 
are ⅓ unit long, and those at ¼ & ¾ are ¼ unit long. Red lines are used to indicate fractions of a circle 
which are multiples of the reciprocals of powers of two such as quarters and eighths, with the heaviest 
line indicating ½. Gold lines indicate multiples of the reciprocals of multiples of three, with the thirds 
receiving the heaviest lines. Blue lines indicate multiples of the reciprocals of the multiples of five, with 
fifths receiving the heaviest line. In the enlarged quadrants at right, the dashed line reminds us that the 
60° angle is one which generates an equilateral triangle.
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Twelfty, 
or Adventures with Alternating Bases

The Duodecimal Bulletin interviews Wendy Y. Krieger
Preface

Wendy Krieger is a retired Australian with a degree in physics, a penchant for geom-
etry of higher spaces, and the number she calls “twelfty”. One of my own periodic inter-
ests involves polychora, the figures of four-dimensional space—trawling for interesting 
tidbits on the internet eventually brought me to Ms. Krieger’s “polygloss” segment of 
her website 1. What stood out from the nomenclature associated with these higher fig-

ures is that in places 2, she referred to “twelfty”, which turns out 
to be base ten-dozen 3! This prompted me to contact her in the 
middle of last year to see if she might send some of her thoughts 
about such a large base, and why she considers the long hun-
dred to be of use to her. Ms. Krieger sent a few notes and has 
corresponded on the subject. What follows is an account of Ms. 
Krieger’s rationale, which I have backed up with some research 
and illustration. We dozenalists may not fully agree with Ms. 
Krieger’s observations, but we are accustomed to “Excursions 
in Numbers”, and this is a grand excursion.

A few notes about Ms. Krieger’s use of “twelfty”. Wendy “shopped” for a number 
base which would facilitate the recognition and manipulation of assorted vulgar frac-
tions whose denominators were multiples of small prime numbers. An example of a re-
ciprocal of a simple prime would be ½, ⅓, 1/5, or 1/7. She methodically examined the 
digital periods of reciprocals of small primes in many bases, looking beyond the prime 
divisors to the coprime reciprocals, for the shortest repeating digits across the simplest 
prime reciprocals 4. She was looking for simple repeating fractions. Table 1 illustrates 
“preferred intervals” of the reciprocals of the eight most simple and commonest primes 
across many bases. Dozenal features 2 regular numbers 5 deriving from primes (½, ⅓), 
which dozenalists recognize as 0;6 and 0;4. The dozenal expansions for 1/b and 1/11; 
aren’t bad at 0;1̄… and 0;0̄b̄…with a period length of 1 and 2 respectively. Dozenal 
doesn’t handle 1/5 or 1/7 very well at all, requiring the maximum period length for both. 
Base ten dozen features 3 prime regular numbers 5 (½, ⅓, 1/5), but also short periods for 
the reciprocals of 7, b, 11;, and 15;!

Having recognized base ten-dozen as useful, Ms. Krieger looked to the ancients and 
how they regarded quantity. Our modern society is based on a uniformily-applied deci-
mal system. We count individual packages in decades and hundreds, in multiples of pos-
itive integral exponents of ten. Our mechanized society prefers percentages, dividing by 
multiples of the negative integral exponents of  ten. Base ten is applied uniformily, across 
the decimal point today, but the Romans and the Greeks grouped multiples by ten, and 
divisions by highly factorable numbers. There is evidence both cultures counted in a “bi-
quinary” fashion; once they counted to five, they noted it, continuing to ten thereafter, 
then carrying a one to the next place. Evidence of this can be seen in Roman numerals. 
The Babylonians used base five dozen for both multiples and divisions of a unit. They 
split their compound digits into a decade-figure and a unit-figure. Ms. Krieger was at-
tracted to the ancient compound digit, which she recognized as an “alternating base”.

“	Pure duodecimal-
ization appears to 
ignore that multi-
plication and divi-
sion are different 
processes in the 
human mind”

2 3 5 7 b 11 15 17
1 2 4 6 a 10 14 16

6 • • 1 1 m m m 9

8 • m m 1 m 4 8 6

a • 1 • m 2 6 m m

10 • • m m 1 2 m 6

12 • m 2 • m 1 m m

13 m • • 1 5 m 8 m

14 • 1 1 3 m 3 2 9

16 • • m 3 m 4 1 2
18 • m • 2 5 m m 1
19 m • 1 • 2 4 4 m

20 • • 2 m m m m 9

24 • 1 m • m m m 9

26 • • • 3 m 6 4 3
28 • m m 3 2 m 8 m

30 • • 1 1 5 6 8 9

36 • • m • 5 3 8 9

40 • • m 2 5 3 m m

50 • • • 3 5 4 8 m

60 • • m 3 m m 4 m

80 • • 1 m m 4 m 1
83 m • 2 1 • 4 m 9

a0 • • • 1 2 3 1 9

156 • • • • 1 m m 1
260 • • • m m 3 m 2

Table 1. “Preferred intervals” of repeating 
digital representations of the reciprocals of 
small prime numbers in various bases. The 
small primes are listed at the top, increas-
ing rightward from the smallest (2) at the 
leftmost column. Bases considered appear 
at the head of the rows. A bullet (•) signi-
fies a regular digital fraction in that base, 
which has a simple terminating fraction. 
Example: decimal 1/5 = .2. The length of 
the set of repeating digits is given for each 
prime nondivisor in each base. Examples: 
decimal ⅓ = .3̄, period of 1, or dozenal 1/5 
= ;2̄4̄9̄7̄, period of 4. An “m” signifies that 
the digital fraction of a given prime recip-
rocal is a cyclic number, with the maxi-
mum period length. Thus the dozenal 
example of 1/5 is noted in the table as “m”. 
The maximum period lengths (the lengths 
of cyclic numbers for the prime recipro-
cals) appears below the primes at top.

For the sake of this article, wherein we consider 
alternative bases, we’ll call the decimal point the 
“unit point” and the uniform application of a base a 
“uniform base”. We’ll refer to “decimal expansion” 
for bases other than decimal as “digital expansion”, 
“decimal fractions” as “digital fractions”.

Let’s take a closer look at Ms. Krieger’s case for 
alternating base ten-dozen. • the Editor

•
The uniform expression of any integer base r ne-

cessitates a set of r unique digits all less than r. These 
single-character, integer digits range between {0, 
(b – 1)} inclusive. The basic arithmetic tables are 
simply arrays of r² elements. We may expand  frac-
tions 1/n  in base r “digitally”, registering multiples 
of negative powers of r. The fraction 1/5 expressed 
decimally is written 0.2, while the dozenal expres-
sion is the recurring digital fraction 0;2̄4̄9̄7̄…

Any number r might serve as a base. In practice, 
the human limitations of memorizing the full arith-
metic arrays tends to limit consideration of bases 
around the magnitude of decimal, such as octal, 
dozenal, or hexadecimal. Waiving the mnemonic 
restrictions on the scale of multiplication tables 
allows one to consider large bases like five- or 
ten-dozen, or even decimal 1680. Free of the con-
straints of human memory, one can use a modern 
calculator in place of arithmetic tables. We might 
use base 5832. (183) or 20736. (124) or some other 
power of a lesser number to do precise calculations 
in base 16; or 10;, computing three or four of the 
digits of these smaller bases at a time.

Over the years, Ms. Krieger has used many 
bases, even to the extent of devising measurement 
systems for them. This is more to understand the 
nature of number, since measurement and num-
ber are often entwined. One interesting scale she 
notes is the Rankine temperature scale in dozenal. 
In such scale, water freezes at 350;r and boils at 
480;r. The normal thermometer runs from 300;r 
(i.e. –28° f = –33 c) to 400;r (116° f = 46.7 c), mak-
ing cold as a low number and hot a high number 
in the same gross. The Rankine scale is the basis 
of  her own “gorem” temperature scale in “twelfty” 
(see Figure 8).

We can regard ordinary numbers has having 
an integer part and fractional part. If we regard the 
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Figure 3. A Roman pocket abacus, which 
enabled calculation with mixed radix num-
bers. The integer-part of the number in ques-
tion would register in powers of ten to the 
left of the dashed line. Right of the line, the 
mantissa or fractional part would be com-
puted in highly factorable denominations. 
Uncia, twelfths of a unit, were counted in 
the first column to the right of the dashed 
line. The rightmost column computed doz-
enal parts of the uncia 7.

functioned as the unit point of the number. He writes that the upper zone was used 
to calculate the exponent of the significand, so that the counting board represented a 
number in a format similar to scientific notation, except that the ancients positioned the 
unit point in front of the significand, rather than after the first digit of the significand as is 
the practice today. A decimal example: 2011. would be represented like .2011 e+4 rather 
than 2.011 e+3 [11]. 

Stephenson posits that the Greeks inherited the couting board technology from the 
Babylonians 12, which were uniformily sexagesimal. The later cultures simply converted 
the uniform sexagesimal arrangement of the Mesopotamian counting board to their 
own decimal-multiple, dozenal-division arrangement 13. 

The ancient Greeks inscribed the index in Figure 2 on their counting boards, tallying 
whole units using denominations of 1 × 10ⁿ and 5 × 10ⁿ drachma. The Greeks divided 
the drachma into 6 obol. Three smaller denominations were ½, ¼, and ⅛ obol 14. The 
Romans counted multiples in units of 1 × 10ⁿ and 5 × 10ⁿ, similar to the Greeks. These 
were represented by the familiar Roman Numerals. When the Romans divided their 
basic units of measure and money, they used the duodecimal uncia 15. The Roman hand 
abacus shown in Figure 3 featured decimal multiples prominently on the left side of the 
device, but dozenal divisions to the right. So the ancient Greeks and Romans appear 
to be accustomed to using decimal when dealing with multiples, and highly composite 
divisions of a unit: our forefathers were accustomed to dealing with mixed radixes.

Multiples and Divisions

Ms. Krieger observes that human societies have tended to deal with multiples and 
fractions in separate ways. The application of counting board calculations, especially in 
the Roman and Greek traditions, contributes to this idea.

Wendy also notes the historical tendency to deal differently with multiples and frac-

 	 talent				   drachma						        obol

	 c 	 d 	 e 	 f 	 g 	 h 	 i 	 j 	 k 	 l 	 m 	 n 	 o
	 6000.	 5000.

	1000.	500.	
100.	 50.	

10.	 5	 1	 1/6.	 1/12.	 1/24.	 1/48.
Figure 2. Greek symbols on the Table of Salamis. Symbols at left represent multiples, in decimal denomi-
nations. The leftmost unit is the talent, while the symbols printed higher under “drachma” represented 
pure decimal powers. The lower symbols represented 5 times the decimal power symbol immediately to 
the right. The four symbols at right represent, from left to right, the obol (1/6 drachma), the demi-obol 
(1/12 drachma), the quarter-obol (1/24 drachma), and the chalkos (1/8 obol, 1/48 drachma) 13.

n n̄ n n̄ n n̄

2 30 16 3,45 45 1,20

3 20 18 3,20 48 1,15

4 15 20 3 50 1,12

5 12 24 2,30 54 1,6,40

6 10 25 2,24 1 1

8 7,30 27 2,13,20 1,4 56,15

9 6,40 30 2 1,12 50

10 6 32 1,52,30 1,15 48

12 5 36 1,40 1,20 45

15 4 40 1,30 1,21 44,26,40

Table 2. Standard table of reciprocals used in an-
cient Mesopotamia. The notation is sexagesimal, 
represented by decimal representation a.
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Figure 1. The Salamis Tablet, an example of an ancient counting board. 
There are two zones, an upper and a main (lower) zone, seen here as a group 
of horizontal lines. Letters which Menninger (1969) writes “can be identified 
as early Greek numerals and also as denominations of coins” appear on three 
sides of the counting board. 10

significant digits of a number expressed 
in scientific notation, we can extract a 
significand 6, an integer formed by the sig-
nificant digits, expressed without leading 
or trailing zeroes, the exponent, nor the 
base. The significand of decimal 12.5 is 
125, and of 600, 6. 

The divisors d of of base r can be 
paired in such a way as to yield r when 
multiplied together: r = d × d1

[7]. The sig-
nificand of r in base r is 1. Melville (2005.) 
writes that ancient Mesopotamian civi-
lizations expanded this principle to any 
pair he termed “reciprocals” 8(which we’ll 
call “reciprocal divisor pairs”), consisting 
of positive integers nn̄ whose product is a 
power of sixty 9. Figure 1 illustrates recip-

rocal divisor pairs nn̄ in a typical standard table used by the ancient Mesopotamians for 
easy reference a, here presented in decimalized sexagesimal digits. A decimal example of 
a reciprocal divisor pair is 8. × 125. = 1000., the significand of 1000. being 1. 

The products of a divisor d and a digit t coprime to the base r yields products dt 
whose inverses 1/dt feature the same digital expansion as 1/t. A dozenal example of 
this can be seen in the multiples of 7 as denominators of fractions. These multiples of 7 
have fractional parts that feature some number of zeros preceding the repeated string 
of digits generated by 1/7:

	 1/7  	= 0;186 a35 186 a35…
	 1/12; 	= 0;0a3 518 6a3 518…

	 1/19; 	= 0;06a 351 86a 351…
	 1/24; 	= 0;051 86a 351 86a…
	 1/2b; 	= 0;041 455 9b3 931…

The fact that the repeated string of digits characteristic to 1/7 is observed in the (frac-
tional) reciprocals: that is, the denominator evenly divides 7 × 10;n for some exponent n.

Our Forefathers Used Mixed and Alternating Bases

The counting board (also known as an “early abacus”), the progenitor of the (mod-
ern) abacus, a table on which one moves counter stones about to calculate b. Columns 

are drawn upon the surface, upon which one manipulates the 
counters. When a counters exist on a column, one replaces these 
a counters with a single counter in the next column. The Sala-
mis Tablet, a stone counting board found on the Greek island 
of the same name, had two zones for representing numbers (see 
Figure 1.) Stephenson (2010) argues that the Babylonians used 
the main, lower zone of the counting board for computing, rep-
resenting a significand starting at the top line. The top line then 
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decade-figures

1☐ 2☐ 3☐ 4☐ 5☐

a k u E O
unit-figures

☐1 ☐2 ☐3 ☐4 ☐5 ☐6 ☐7 ☐8 ☐9

1 2 3 4 5 6 7 8 9
Figure 4. The 5 decade-figures and 9 unit-figures that compose the sixty digits of the ancient Meso-
potamian sexagesimal system. The decade-figures may appear alone; in this case, the decade-figure 
simply stands for a round decade. 4☐, by itself, signifies digit-forty, or E, and not digit-four or 4. The 
unit-figures may likewise appear alone and communicate a multiple of units lesser than a decade. ☐5, 
alone, signifies digit-eight, or 5, and not digit-fifty or O. A paired decade- and unit-figure composes 
intermediate digits. Thus, 4☐ and ☐5 together compose digit-forty-five or  J. Figures paired in the 
opposite order, thus ☐5 and 4☐, must be interpreted as separate digits (digit-five, digit-forty), as must 
two decade-figures  (say 4☐, 1☐) or two unit-figures (e.g. ☐5, ☐7). The digit-five digit-forty or 5E 
represents the significand 5/60 + 40/602, the exponent given by context. ***

Thus, the ancient Greeks and Romans counted and manipulated multiples in bi-qui-
nary decimal (decimal based on two cycles of five units each per digit), and manipulated 
fractions using highly divisible number bases. Ms. Krieger laments that today’s uniform 
decimal base ignores the alternating base notion of the upper and lower slots on the left 
side of the abacus shown by Figure 3.

The Ancient Mesopotamian Sixty

The Babylonians inherited sexagesimal numeration from the Sumerians 18. The Baby-
lonian cuneiform system, shown by Figure 4, uses five decade-figures and nine unit-
figures to compose a sexagesimal digit. We’ll refer to the decade-figures conceptually as 
a numeral followed by a box, e.g. the decade-figure signifying “four decades” we’ll show 
as 4☐. The unit-figures will feature a box preceded by a numeral, e.g. the unit-figure 
meaning “five units” we’ll refer to as ☐5. The decade-figures could stand alone and com-
municate the value of a pure decade: the decade-figure 4☐ or E, by itself, communicates 
sexagesimal digit-forty. The unit-figure alone communicates sexagesimal digits with val-
ues lower than digit-ten: the unit-figure ☐5 or 5 signifies sexagesimal digit-five. When 
a decade-figure and a unit figure appear in sequence, they are interpreted as a pair and 
compose an intermediate sexagesimal digit greater than digit-ten. Decade-figure 4☐ or 
E followed by unit figure ☐5 or 5 compose the sexagesimal digit-forty-five or J. Confu-
sion arises when a Babylonian scribe marks 4☐ ☐5 or E 5, meaning “forty sixties and five 
ones”, and fails to leave a space wide enough to distinguish it from digit-forty-five 19.

Ms. Krieger posits that the precursor to the sexagesimal system regarded the decade-
figures instead as fraction symbols, where 1☐ or a represents 1/6, 2☐ or k represents 1/3, 
etc. so digit-forty-five or J could be either read digitally as [4/6][5] or [40][5], context 
providing the actual value of the numerals. Neugebauer and Menninger contribute that 
interpretation of the scale of the significand and the convertibility between common 
fractions and whole numbers of measure were important to the Babylonians 1a. The al-
ternating decade-figures and unit-figures arrangement in the digits of cuneiform sexag-
esimal notation Ms. Krieger interprets as an alternating base-6 and decimal notation.

Wendy asserts the sexagesimal system appears intended to avoid division. As evi-
dence she supplies the following:

tions may be linked to the way we think. Butterworth (1999) writes that multiplication 
and division are handled in different parts of the brain 16. A person affected with some 
brain damage may have lost the part that deals with multiples but can still handle divi-
sion. Moreover, only one part of the brain appears to be involved in forming multiples, 
while several different parts are each able to handle division on its own.

Regarding the treatment of measure in the human mind, two separate techniques of 
reckoning multiples and divisions of a unit can be recognized. The “multiples technique” 
covers reckoning multiples of integral units, while the “divisions technique” governs 
fractional parts of a unit. Ms. Krieger notes that we may extrapolate these techniques to 
cover the “territory” of the other. “Sub-multiples” may be extended below the unit point 
to measure the fractional part by counting multiples of negative powers of the base. This 
may be seen in the decimalization of fractions. “Super-divisions” may be extended above 
the unit point to measure integral units, by dividing positive powers of the base. 

Wendy muses on the following observations regarding dozenal. Dozenalists appear 
to have presumed that the uniform base is the optimum approach to representation of 
both multiples and divisions of units. Decimal extension below the unit point fails to 
yield convenient and efficient divisions of the unit; this is something that dozenalists 
recognize. The decimal is in play outside of its territory. Consider, perhaps the highly 
divisible dozen as “out of its element” as well. Dozens and grosses appear to be super-
divisions, regarding the multiples of integral units as highly divisible as the unciae or 
twelfths. In this way, pure duodecimalization appears to ignore that multiplication and 
division are different processes in the human mind.

The Abacus and Alternating Bases

The Greek notation on the left side of Figure 2, ignoring the talent, deals in two de-
nominations, a set of pure decimal powers (e, g, i, k) and a second intercalated set of 
five times the decimal powers (d, f, h, j). The left side of the abacus shown by Figure 3 is 
arranged in eight columns, with a smaller slot positioned above a larger slot. The Roman 
abacus represented numbers in a given column in the lower slot up to four. When one 
had five, the lower slot was cleared and the upper slot was marked. Numbers n greater 
than five had the upper slot marked, and the requisite number (n – 5) indicated in the 
lower slot. At ten, a single unit in the lower slot to the left of the original column would 
be marked, and both slots in the  original column would be cleared. The slots in the Ro-
man abacus and the intercalated ranks of Greek numerals are instances of an alternating 
base. In counting, one climbs to 5, marks it, then continues to ten, carrying a one to the 
next decimal rank.

The ancient civilizations did not possess a zero 17; however one does not need a zero if 
there is already some other way of indicating the order of magnitude of a digit. Wendy’s 
example follows:

	 “5 hours 22 seconds”	 is the same as 	 5 h. 0 m. 22 s.
	 “5 hours”	 is the same as 	 5 h. 0 m. 0 s.
	 “22 seconds”	 is the same as 	 0 h. 0 m. 22 s.

The distinction between “twenty eight” and the colloquial phrase “twenty-oh-eight” 
comes from this particular form. The “oh” part tells us that the eight is not at a magni-
tude directly smaller than the “twenty”, (i.e. 28.). Instead, it pairs digits in the number 
and signifies there is a higher digit-pair with a vacant low rank and the least significant 
digit-pair with a vacant high rank (eg 20¦08). Thus we can express a vacant magnitude  
without a zero symbol and still express a number intelligibly.



Volume 50; Number 1; Whole Number a0;	 two dozen two 22;21; two dozen one	 The Duodecimal Bulletin

twenty-one, and base ninety-nine, has a marked “preferred interval” system. This means 
that there is a neighboring integer furnishes small prime divisors not represented in the 
prime factorization of the base. For example, the prime factorization of ten is {2 · 5}, while 
the prime factorization of one million minus one is {33 · 7 · b · 11; · 31;}. In the case of 
twelfty, its prime factorization is {23 · 3 · 5}, while twelfty squared minus one is {7 · b2 · 15;}. 
This means these bases will resolve a larger number of possible denominators with shorter 
recurring periods, facilitating factorization of these denominators.
		  decimal	 twelfty	 dozenal
	 1/7	 0.1428571̄4̄2̄8̄5̄7̄	 0:17 17 17 1̄7̄	 0;186a351̄8̄6̄ā3̄5̄
	 1/11	 0.09090909090̄9̄	 0:10 a9 1̄0̄ ā9̄	 0;111111111111̄
	 18/77	 0.2337662̄3̄3̄7̄6̄6̄	 0:28 06 2̄8̄ 0̄6̄	 0;297b462̄9̄7̄b̄4̄6̄

Dozenal supplies “preferred intervals” of length 4 for 1/5, 6 for 1/7, 1 for 1/b, and 2 for 1/11;. 
The fifth, and all fractions with denominators having prime factors 2, 3, and 5, are regular in 
base ten-dozen. supplies preferred intervals no longer than three digits for 1/7 through 1/15. 
“Twelfty” handles fractions much better than dozenal!

twelfty pure 120. decimal dozenal alt. 60. pure 60.
1/7 :17 17 1̄7̄ .hhh̄ .1̄4̄2̄8̄5̄7̄ .1̄8̄6̄ā3̄5̄ :0̄8̄ 3̄4̄ 1̄7̄ .8yh8̄ȳh̄

2/7 :34 34 3̄4̄ .yyȳ .2̄8̄5̄7̄1̄4̄ .3̄5̄1̄8̄6̄ā :1̄7̄ 0̄8̄ 3̄4̄ .h8yh̄8̄ȳ

3/7 :51 51 5̄1̄ .PPP̄ .4̄2̄8̄5̄7̄1̄ .5̄1̄8̄6̄ā3̄ :2̄5̄ 4̄2̄ 5̄1̄ .pGPp̄ḠP̄

4/7 :68 68 6̄8̄ .ЖЖЖ̄ .5̄7̄1̄4̄2̄8̄ .6̄ā3̄5̄1̄8̄ :3̄4̄ 1̄7̄ 0̄8̄ .yh8ȳh̄8̄

5/7 :85 85 8̄5̄ .ЧЧЧ̄ .7̄1̄4̄2̄8̄5̄ .8̄6̄ā3̄5̄1̄ :4̄2̄ 5̄1̄ 2̄5̄ .GPpḠP̄p̄

6/7 :a2 a2 ā2̄ .ииӣ .8̄5̄7̄1̄4̄2̄ .ā3̄5̄1̄8̄6̄ :5̄1̄ 2̄5̄ 4̄2̄ .PpGP̄p̄Ḡ

1(2/2) 1(1) 1(6) 1(6) 2(3) 2(3)
Table 4. Examination of the multiples of one seventh, the smallest prime which is coprime to bases 
10, 12, 60, and 120. Only the mantissas are considered for Krieger’s twelfty notation, a pure base 
120, decimal, dozenal, an alternating base 60, and a pure sexagesimal notation. Since seven is prime, 
and coprime to all the bases examined, the reciprocal of seven is a purely periodic irregular digital 
fraction. The twelfty notation groups the high-low rank pairs, separating the groups by a space. Each 
pair of figures represents one base-120 digit. Thus the left (high) rank in the pair has a dozenal and 
the right (low) rank has a decimal representation. Bars placed above a digit or rank represent part 
of the repeated fraction. The last row lists the number of families of mantissas, with the length of the 
recurrent period in parentheses.

0☐ 1☐ 2☐ 3☐ 4☐ 5☐
☐0 0 0 10 a 20 k 30 u 40 E 50 O
☐1 1 1 11 b 21 l 31 v 41 F 51 P
☐2 2 2 12 c 22 m 32 w 42 G 52 Q
☐3 3 3 13 d 23 n 33 x 43 H 53 R
☐4 4 4 14 e 24 o 34 y 44 I 54 S
☐5 5 5 15 f 25 p 35 z 45 J 55 T
☐6 6 6 16 g 26 q 36 A 46 K 56 U
☐7 7 7 17 h 27 r 37 B 47 L 57 V
☐8 8 8 18 i 28 s 38 C 48 M 58 W
☐9 9 9 19 j 29 t 39 D 49 N 59 X

Figure 6. The ancient Mesopotamian sexagesimal digits were composed of five decade-figures and nine 
unit-figures. With these fourteen figures, sixty unique digits were composed. Krieger’s “twelfty” nota-
tion uses a pair of figures to represent a digit. One may find the corresponding example of an ancient 
Mesopotamian digit by finding the decade-figure in the header row, then using the leftmost column, 
finding the unit-figure. By running a finger to the column of the high rank figure, the unique sexagesi-
mal digit can be identified. Example: decade-figure 5☐ and unit-figure ☐4 renders the digit-54: S.

•	 Many Babylonian arithmetic tables are reckoners of some integer x multiplied by 
the whole numbers 1 through 19, then each decade under sixty 1b. This eliminates the 
need for a complete sexagesimal multiplication table. She remarks that similar deci-
mal “ready reckoner” tables were in use until the advent of electronic calculators.

•	 The Babylonians developed opposition tables, or tables of reciprocals a, arranged ac-
cording to significands, an example shown by Table 2. 

•	 There are reckoner tables for x, where x corresponds to divisors of higher powers of 
sixty, like decimal 1/81 (sexagesimal 44,26,40). 20

•	 Neugebauer refers to the seven brothers problem, which amounts to finding 1/7 sixty-
wise, concluding 08,34,16,59 < 1/7 < 08,34,18. 21

•	 Zeros are significant in initial and medial positions, but not trailing positions. A num-
ber like 0,0,1 is not “1” (e.g. 1 hour), but 1/3600 h = 1 second. 22

Ms. Krieger observes that the sexagesimal system continues to be used today in the 
sciences of astronomy and geometry. Our watches count five dozen minutes to the 
hour, five dozen seconds to the minute. The circle is divided into 360 degrees, which 
equals 6 iterations of the sixty degree equilateral triangle; these degrees themselves are 
divided into sixty arc-minutes and sixty arc-seconds 23. We continue to divide the heav-
ens into arcseconds, although these arcseconds are now divided decimally. Similarly we 
now count hundredths of a second in a marathon or an Olympic swim, and science uses 
milli-, micro- and nanoseconds. Today’s culture is still fascinated with the Babylonian 
system, evidenced by a 23 November 2010 New York Times article E.

Why “Twelfty”?

As stated in the preface, Wendy examined number bases for what Ore (1948)refers to 
as “determining denominators that yield short periods” of recurring digits in their digital 
fractional expressions. These short periods she called “preferred intervals”. She applied 
the formula (rn – 1) [24], obtaining results similar to Table 3, and getting a general picture 
across many bases r for the smallest primes as shown by Table 1. Twelfty, like decimal, base 

dozenal
2 3 5 7 b 11 15 17 Others

1 ✓ ✓ •
2 ✓ ✓ · •
3 ✓ ✓ · 111

4 ✓ ✓ • · · 25

5 ✓ ✓ · 11111

6 ✓ ✓ • · · • 111

“twelfty”
2 3 5 7 b 11 15 17 Others

1 ✓ ✓ ✓ • •
2 ✓ ✓ ✓ · • ·
3 ✓ ✓ ✓ · • · 791

4 ✓ ✓ ✓ · · · 8401

5 ✓ ✓ ✓ · · 5a0404a1

6 ✓ ✓ ✓ · · · · 8321, 791

Table 3. Prime factors present in (rn – 1) for dozenal and “twelfty”, where the value of n is increment-
ed from 1 to 6. The checkmarks remind us that the prime factors above are divisors of r, and thus have 
regular fractions. A bullet (•) marks the smallest value of n that is divisible by the prime. This value is 
also the length of the recurring fractional period associated with that prime in base r. Other instances 
where the same prime appears in the factorization of (rn – 1) for higher values of n are grayed out. 24
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Figure 7. Diagrams of the logarithmic cycles for certain positive integers r. The logarithms of the digits of 
base r are plotted with zero at the “12 o’clock” position, then moving clockwise toward the logarithm of 
2 in base r (log 2/log r), till we reach the the logarithm of r in base r, which equals 1, here represented by 
a full rotation. Blue lines accentuate the location of the divisors of r, with the trivial divisors occupying 
the same location at “12 o’clock”. Pairs of “reciprocal divisors” lie horizontally from one another. All 
figures in the diagrams are dozenal, except the diagram for r = a0; is annotated in “twelfty”. These dia-
grams were produced by data yielded by the Wolfram Mathematica formula Column[Table[List[i–
1*N[360*Log[r]]], {i, 1, r}]], where r is the positive integer under examination. These diagrams were 
produced mid 2009 for a separate study by Michael De Vlieger, and extended to illustrate r = a0;.

dozenal twelfty decimal
2 ;6 :60 .5

3 ;4 :40 .3̄…
4 ;3 :30 .25
5 ;2̄4̄9̄7̄… :24 .2
6 ;2 :20 .16̄…
7 ;1̄8̄6̄ā3̄5̄… :1̄7̄… .1̄4̄2̄8̄5̄7̄…
8 ;16 :15 .125
9 ;14 :13 40 .1̄…
a ;12̄4̄9̄7̄… :12 .1
b ;1̄… :1̄0̄ ā9̄… .0̄9̄…

10 ;1 :10 .083̄…
11 ;0̄b̄… :0̄9̄ 2̄7̄ 8̄3̄… .0̄7̄6̄9̄2̄3̄…
12 ;0ā3̄5̄1̄8̄6̄… :08 6̄8̄… .07̄1̄4̄2̄8̄5̄…
13 ;09̄7̄2̄4̄… :08 .06̄…
14 ;09 :07 60 .0625
15 ;08579… (m) :0̄7̄… .05882… (m)
16 ;08 :06 80 .05̄…
18 ;07̄2̄4̄9̄… :06 .05
19 ;06̄ā3̄5̄1̄8̄… :05 8̄5̄… .0̄4̄7̄6̄1̄9̄…
1a ;06̄… :0̄5̄ 5̄4̄ 6̄5̄… .04̄5̄…
20 ;06 :05 .0416̄…
21 ;05915… (m) :04 96 .04

Table 5. Digital representation of reciprocals of 
the dozenal numbers at left in the bases shown 
in the top row. Terminating digital fractions are 
shown in bold. Repeating fractions have digital 
values which are followed by an ellipsis (…). 
The repeating digits of the digital fractions are 
denoted by a vinculum placed above the group of 
digits (e.g. dozenal ;2̄4̄9̄7̄…). Digital fractions 
with periods longer than six digits are designated 
“m”, meaning that their representations are of 
maximal length.

The Logarithmic Cycle

Ms. Krieger considered the distribution 
of divisors on a logarithmic cycle. Figure 7 
shows the logarithms of base r represented 
as fractions of a circle, where one full turn 
= r. She asserts the divisors of the base 
represent the best intermediate scales and 
division points (like 5¢ or 25¢ coins), the 
more equally spaced they become, the bet-
ter they serve as intermediate values.

Bases like 16;, 24;, and ten dozen have 
relatively uniform logarithmic spacing 
between their divisors. Other bases like 
sexagesimal have large gaps between the 
divisors (cf. 6 and a in r = 50; in Figure 7) 
or like 10; or 60;, have relatively close divi-
sor spacings (3 and 4 or 8 and 9). In base 
16;, the number 6 and the golden ratio (φ 
= ±1;75): 6φ ≈ φ6 ≈ 16; . 

Bases like 24; and a0; are 2-perfect and 
3-perfect numbers. One can devise weights 
like ⅛, ¼, ½, 1, 2, 4, 8 to give a set of near 
binary weights that work well with the base. 
With 2-perfect numbers (6, 24;), the divi-
sor sets {1, 2, 3, 6} and {1, 2, 4, 7, 12;, 24;} 
add up to double the base. Ten dozen’s di-
visors total up to three times the base. 

The 14; divisors of a0; are scattered over 
points that are roughly a0;(n/19;). Dozenal di-
visors fall near the square root (at the “six 
o’clock” position in the diagrams of Figure 
7), while those of 20; fall near the cube roots 
(at the “four and eight o’clock” positions).

Structure and Nomenclature for Twelfty

Twelfty is noted much like Babylonian 
sexagesimal notation, except that one uses 
the Hindu-Arabic numerals 0 through 9 
for the unit-figures, and a dozenal range of 

numerals, beginning with 0 through 9, for the  decade-figures. Her own notation for ten 
decades is “V”, and is called “teenty” to avoid confusion with the word “twenty”. She 
uses “E” to signify eleven decades, calling it “elefty” to avoid mixing up withthe word 
“seventy”. (In this article, we’ll retain the dsa standard dozenal numerals as these are 
already familiar to the reader.) In her notation, one may omit a preceding decade figure 
for digits larger than 1. However, zeros must appear in medial positions (such as 1/13; = 
:08, or in a number like 20 00 05 = decimal 288,005) to avoid confusion, and in the unit-
figures of even-decade digits like :60 = ½ and 10 00 = decimal 1200. 

Wendy’s preference would be to regard the decade- and unit-figures as proper digits 
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of an alternating base rather than components of single digits of a uniform base-ten-
dozen. This is a crucial strength of Krieger’s “twelfty” system; this enables computation 
using ordinary decimal and dozenal addition and multiplication rather than the massive 
uniform base-ten-dozen multiplication tables. Wendy calls a figure, one of two such that 
compose a single digit, a staff. Thus we can call the decade-figure an “upper staff” or a 
“decade-staff”, and the unit-figure as a “lower” or “unit-staff”. Each place or twistaff of 
base-ten-dozen are thus composed of a pair of higher and lower staves, in that order. 
Consider the twelfty number 5 28: (decimal 628.) The upper staff 2☐ followed by the 
lower staff ☐8 represents the decimal number 28. However, pairing the staves in the 
opposite way (lower staff of a higher digit and the upper staff of the lower digit) is also 
important. The lower staff ☐5 in the twelfty “hundred” position followed by the upper 
staff 2☐ of the lower represents the decimal number 620. We’ll call this arrangement 
an “interstitial pair”. Ms. Krieger notes that an interstitial pair with the staves separated 
by a unit point (e.g. ☐1:6☐ = 1½) replicates the ancient use of mixed bases, decimal to 
represent multiples, dozenal to represent fractions.

Ms. Krieger asserts that, since twelfty can be thought of as twelve decades, and provided 
one is familiar with dozenths and decimals, addition in this base is straightforward. Simply 
add the lower staves using decimal rules, carrying after summing more than ten, and add 
the upper staves using dozenal rules, carrying after summing more than one dozen:
	 1 1  1 1 1 1 1 1 0919 1
	 29 71:48	 3551.4	 1 87 43 24:	 2,985,984	 1 10 a0:64	 15700 8/15
	 + 14 48:72	 1728.6	 69 53 40: 	 1,000,000	 –75 b5:40	   9 1 1 5 ⅓ 	
	 44 00:00	 5280.0	 +          4 32:	             5 1 2 	 54 a5:24	 6585 1/5
			   2 36 a0 96:	 3,986,496

 Wendy uses the “reciprocal divisor pairs” of twelfty such as {2 × 60.} or {10. × 12.} to 
facilitate multiplication and division (see Table 7). She takes advantage of the fact that 
a given multiplication problem can be divided into two operations, thus avoiding use 
of an unwieldy digit as a multiplier. One tool is the “twelve-shift”, wherein a multiplier 
which is a multiple of twelve, say (a8:)—decimal 108.—is split into (9:)(12:). The best 
illustration of this occurs in an example. Let’s multiply 5 28: by 84:. We can regard the 
multiplier (84:) as (7:)(12:). Dealing with the (12:) first, we can use a twelve-shift. The 
twelve-shift involves dividing the first number into interstitial staff pairs: ☐5:2☐, ☐8:0☐. 
Using Table 8, ☐5:2☐-hundred becomes 62: hundred, while ☐8: becomes 96:. Adding 

twelfty decimal dozenal upper staves
one 1: 1. 1; 1☐ -teen
ten 10: 10. a; 2☐ twenty-

hundred 1 00: 120. a0; 3☐ thirty-
ten hundred 10 00: 1200. 840; •

thousand 1 00 00: 14,400. 8,400; 9☐ ninety-
ten thousand 10 00 00: 144,000. 6b,400; a☐ teenty-

cention 1 00 00 00: 1,728,000. 6b4,000; b☐ elefty-
ten cention 10 00 00 00: 17,280,000. 5,954,000; Lower staffs have the 

same names as the deci-
mal digits 0-9.

million 1 00 00 00 00: 207,360,000. 59,540,000;

ten million 10 00 00 00 00: 2,073,600,000. 49a,540,000;

Table 6. Krieger’s “twelfty” nomenclature and conversions.
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these together, we get 62 96:. Multiplying 62 96: by the remaining factor 7: decimally, 
careful to carry for the lower staves decimally, and for the higher staves dozenally, we find 
the answer: 3 79 72:. We can use other reciprocal divisor pairs, depending on the multi-
plier’s factors. If we want to multiply the decimal year 2011. = twelfty 16 91: by 40:, we can 
use its “reciprocal”, divide it by 3:, and promote the result one digit (two staves). 16 91: 
divided by three is 5 40: + 30:40 = 5 70:40. Promoting the result, we obtain 5 70 40: or 
decimal 80,440. This way, we can avoid multiplication by large digits. Multiplication and 
division can proceed quite conventionally, so long as one is mindful of converting each 
higher staff to dozenal notation, i.e., higher staves with a decimal value of ten-decades is 
written a☐ (teenty), and eleven-decades as b☐ (elefty). This method is effectively using 
the {10. × 12.} pair again, this time starting with the factor ten:

	 89:		  89.	 89:		  89.
	 × 73:		  × 73.	 73:)54 17:		  73.)6497.
	 2 27:	 [× ☐3]	 267.	 –48 80:	 [× 8☐]	 –5840.
	 + 51 b0:	 [× 7☐]	 + 6230.	 5 57:		  657.
	 54 17:		  6497.	 –5 57:	 [× ☐9]	 –657.
				    0:		  0.

Wendy regards ninths as important numbers, as they turn up often in square roots.
She soon learned that 4/9 is :53 40 and 7/9 is :93.40. The very large number of divisors 
twelfty offers provides useful patterns for writing mixes on bottles, etc. (e.g. 30p x, 90p 
water). If you think this simple household application renders using base-ten-dozen 
akin to using an atom bomb to snuff out a mosquito, read on. I pressed Wendy for a 

2. lower decade-staff
:0☐ :1☐ :2☐ :3☐ :4☐ :5☐ :6☐ :7☐ :8☐ :9☐ :a☐ :b☐

1. 
hi

gh
er

 u
ni

t-
st

af
f

☐0: 00: 01: 02: 03: 04: 05: 06: 07: 08: 09: 10: 11:

☐1: 12: 13: 14: 15: 16: 17: 18: 19: 20: 21: 22: 23:

☐2: 24: 25: 26: 27: 28: 29: 30: 31: 32: 33: 34: 35:

☐3: 36: 37: 38: 39: 40: 41: 42: 43: 44: 45: 46: 47:

☐4: 48: 49: 50: 51: 52: 53: 54: 55: 56: 57: 58: 59:

☐5: 60: 61: 62: 63: 64: 65: 66: 67: 68: 69: 70: 71:

☐6: 72: 73: 74: 75: 76: 77: 78: 79: 80: 81: 82: 83:

☐7: 84: 85: 86: 87: 88: 89: 90: 91: 92: 93: 94: 95:

☐8: 96: 97: 98: 99: a0: a1: a2: a3: a4: a5: a6: a7:

☐9: a8: a9: b0: b1: b2: b3: b4: b5: b6: b7: b8: b9:

Table 8 (above, right). “Reversal” Table. To multiply by one dozen in twelfty, one uses the “twelve 
shift”, which is the first step in most twelfty multiplication problems. Extract the unit-staff of the high-
er twistaff (the higher unit-figure), then the decade-staff of the lower twistaff (the lower decade-figure) 
to get an interstitial pair. For example, if we are performing a twelve shift on the number 4 89:15, we 
would extract the pairs ☐4:8☐, ☐9:1☐, and ☐5:0☐. Using ☐4:8☐, find ☐4 in the leftmost column, 
then 8☐ in the topmost row. The twelve shift is 56: For the next twistaves, we obtain a9: and 60:. 
Essentially, all we’ve done is read the high unit-staff as a dozen, and the low decade-staff as a unit. 
The interstitial pair ☐4:8☐, if interpreted as the dozenal number 48; or four dozen eight, has the 
decimal equivalent of  56. The interstitial pair ☐9:1☐, interpreted as nine dozen one, is 109 decimally, 
however, the decade-staff of the result cannot be represented as “10” decades; instead we write “a9” 
(teenty-nine) rather than “109”. Thus, 4 89:15 “four hundred eighty nine and an eighth” [decimal 
569.125] twelve-shifted is 56 a9:60 “fifty six hundred teenty nine and a half” [decimal 6829.5].

1: × 1 00:
2: × 60:
3: × 40:
4: × 30:
5: × 24:
6: × 20:
8: × 15:

10: × 12:

Table 7. The re-
ciprocal divisor 
pairs for twelfty.
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10	 Menninger 1969, page 299, “The nature of the counting board: the Salamis Tablet”.
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significant digit in the top position [of the lower zone], therefore as a fraction of one, along with the appro-
priate radix shift, then no complex positioning rules are needed. … The Babylonians [sic] lack of a radix 
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Tablet is used for storage and manipulation of a radix shift, what we call an exponent of the base.” 

12	 Stephenson 2010, section “Unused Dashed Lines”, specifically, “The Romans were borrowers. They bor-
rowed The Salamis Tablet from the Greeks, but the Greeks borrowed it in turn from the Babylonians.”  
See also section “Designers of the Salamis Tablet”.

13	 Stephenson 2010, sections “Clues” and “Roman hand abacus”.
14	 Menninger 1969, pages 299–303, “The nature of the counting board: the Salamis Tablet”.
15	 Menninger 1969, pages 305–306, “The nature of the counting board: the Roman hand abacus”.  

See also Stephenson 2010.
16	 Butterworth 1999, pages 183–196, “Numbers in the brain: 2. Inside the mathematical brain” and “Num-

bers in the brain: 3. Understanding numbers”.
17	 Menninger 1969, page 167, “Babylonian influence: Babylonian sexagesimal system”.
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absolute value of a sexagesimally written number”. See also Menninger 1969, pages 164–165, “Babylonian 
influence: Babylonian sexagesimal system”, especially “The requirements of ordinary life in Babylonia, as 
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tists do their sums?” page 154–156, especially figure 13.68: Twenty-five times table.

20	 Neugebauer 1962, Chapter 2, “Babylonian mathematics”, page 31–34, item 18.
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φ6 = 15.b3b8509941ab…, and 6φ = 16.1a965b408058…
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more serious application; she provided a sample of higher-space 
mathematics which we’ll describe here in a nutshell.

Ms. Krieger is has studied the regular and semiregular geomet-
ric figures of higher space, collectively known as polytopes. These 
figures are analagous to our three-dimensional Platonic and Ke-
pler-Poinsot solids (the cube, octahedron, the stellated dodecahe-
dra, etc.) and the semiregular figures such as the cuboctahedron 
and the icosidodecahedron. As an example, she computes aspects 
of the measurements of figures in 4 and 5 dimensions using square 
roots. Wendy says she’s often on the go, and likes to make use of 
down time to explore using mathematics, such as time at a cafe or 
waiting on a bus. Twelfty, with its more compact significands, its 
many divisors, the short preferred intervals, and her alternating-
base notation using staff-pairs, facilitates math on the go. She can 
boil out the three unique prime factors of ten-dozen (2, 3, and 5) 
to leave only the primes not included, and can use the short pre-
ferred intervals she’s familiar with to determine what prime num-
bers are at play in a given result. 

Wendy has written computer algorithms to help analyze the 
realm of higher space. She’s also devised complete weights and 
measurement systems for twelfty.

Conclusion

Wendy Krieger has been using twelfty for about two and a half 
dozen years. To her, expressions like “sixty-sixty” have displaced 
“fifty-fifty”. Over the years, through conducting arithmetic and 
producing a system of weights and measures, Wendy has become 
fluent in twelfty. She’s resolved complex multiplication and square-
root algorithms in the base, as well as tables that facilitate other op-
erations. Some common calculations others may have routinely 
conducted in decimal Wendy claims she’s done only using twelfty.

Wendy Y. Krieger is a brilliant intellect, with many more inter-
esting tools and techniques like criss-cross multiplication, quarter-
square multiplication, and continued fractions. We could literally 
write a book about her adventures with the alternating-base ver-
sion of base ten-dozen she calls “Twelfty”. •••
Editor’s notes: See pages 28; and 29; for notes and references. This 
interview was conducted over a series of electronic mails. Ms. Krieger 
provided the Neugebauer and Butterworth references, while the balance 
of the references and all the citations were provided by M. De Vlieger.

• Visit Wendy Krieger’s website: http://os2fan2.com/. 
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Figure 8. Wendy Krieger’s “gorem” scale, compared to Rankine in dozenal (°R), Fahrenheit (°F), and 
centigrade (C). 27 In the gorem scale, the “forty below” equivalency point between centigrade and Fahr-
enheit lies at 2 b0:. At standard pressure, the freezing point of water lies at 3 50:, its boiling point at 4 
80:, and the midpoint of its liquid phase at 4 05:. Between 3 00: and 4 00: gorem lie everyday tempera-
tures. Our freezers and refrigerators cool to around  3 23: and 3 57: gorem. Human body temperature 
lies around 3 a5: gorem. Room temperature is a comfortable 3 80: gorem.

gorem °F°R C
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solution from page 10; by Gene Zirkel

F T Q  N Q E F  M D S G Y Q Z F  R A D  N M E Q 

FIQXHQ AHQD NMEQ FQZ UE M XAAW MF FTQ RDMO-

FUAZMX QJBDQEEUAZ RAD 1/3 UZ NAFT NMEQE.  •••

THE BEST ARGUMENT FOR BASE 

TWELVE OVER BASE TEN IS A LOOK AT THE FRAC-

TIONAL EXPRESSION FOR 1/3 IN BOTH BASES.

Here is the solution to the cryptogram!
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g
The Basics of

Systematic Dozenal Nomenclature E

Systematic Dozenal Nomenclature is a concise, coherent, and consistently
dozenal way to refer to numbers, as well as to form words for arbitrary numbers,

intended to be international in scope and comprehensive in nature. A full exposition of
this system (SDN) will have to wait for another Bulletin; however, a basic overview will
be o�ered here. (Note that this article uses Pitman characters, as is the preference of the
author.)

Dozenalists have long argued about the proper way to speak when using dozenals.
Is it “ten” or “dek?” Is it “eleven,” “el,” “elv,” “elf,” or something else entirely? Do we
say “twelve,” “dozen,” or what? And just what do we call a dozen gross, anyway?

Traditional English has a system for talking about dozenals, simple enough, which
goes like this:

Number (doz.) Word
10 dozen
100 gross
1000 great-gross

We can extrapolate from these three; for example, the number "7432X9" is “seven
gross four dozen three great gross, two gross ten dozen nine.” This works, in the sense
that it is functional; and this is usually the very best way to inroduce dozenals to someone
who’s not familiar with them. However, it is clunky, verbose, and (worst of all) ugly.
Something better is needed if we are to make dozenals mainstream.

For many years, the DSA used the “do-gro-mo” nomenclature, which is essentially a
shorthand for the above “plainEnglish” system. “Dozen”becomes “do,” “gross” becomes
“gro,” and “great gross” becomes “mo,” forming the following system well-known to
anyone who has perused the older issues of our Bulletin:

10 Do 0.1 Edo
100 Gro 0.01 Egro
1000 Mo 0.001 Emo

1 0000 Do-mo 0.0001 Edo-mo
10 0000 Gro-mo 0.0000 1 Egro-mo
100 0000 Bi-mo 0.0000 01 Ebi-mo
1000 0000 Tri-mo 0.0000 001 Etri-mo

And so forth, just as far as one cares to take it. This is a much more robust system
that the “plain English” method, and served us well for many years. Some of us continue
to use it.

However, even this system has a �aw: it’s too provincial. That is, it �ts in pretty well
with English (though the fractional names do sound a bit funny), but it �ts in poorly
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in other languages. Dozenal isn’t meant to be limited to the Anglosphere, and never
was; it’smathematically, not culturally, the superior base. So as well as this system has
worked, something better is still needed.

Enter Systematic Dozenal Nomenclature (SDN). A group of dozenalists on the
DozensOnline forum, ably led by John Kodegadulo, has put together a system which
is comprehensive; systematic; simple; and international. The systemmanages all these
traits at once by adopting our elder, Ralph Beard’s, Principle of Least Change: it uses
things which are familiar to all of us, changes them as little as possible to accomplish our
goals, and then runs with them.

The familiar basis for SDN is the set of numerical particles used by the International
Union for Pure and Applied Chemistry (IUPAC). IUPAC takes very familiar Latin
and Greek roots, most of which we already know, to form the names of new chemical
elements until they can be given their "o�cial" names; SDN adds two new particles for
ten and eleven, and then applies them in predictable, easy ways.

Further particles can be formed using the familiar principles of place notation; e.g.,
“25” is simply “bipent,” the number words being put together just as the number digits
are.

Finally, we need something to indicate exponentiation. So we add to these the su�x
“qua” if the power is positive, and “cia” if the power is negative.

Num. Part. Pos. Power Neg. Power
0 Nil Nilqua Nilcia
1 Un Unqua Uncia
2 Bi Biqua Bicia
3 Tri Triqua Tricia
4 Quad Quadqua Quadcia
5 Pent Pentqua Pentcia
6 Hex Hexqua Hexcia
7 Sept Septqua Septcia
8 Oct Octqua Octcia
9 Enn Ennqua Enncia
X Dec Decqua Deccia
E Lev Levqua Levcia

So “10” is now “unqua” (101); 100 is “biqua” (102); 1000 is “triqua” (103); 1 0000
is “quadqua” (104); and so on. We literally simply count the digits after the �rst, use the
corresponding word, and call it a day.

For example:
7 82E4 XE45

In the “plain English” system, this number is borderline impossible to speak; that is,
it could probably be done, but the result would be so unwieldy that speaking it would
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communicate practically nothing to the listener. In the do gro mo system, we get the
rather manageable:

Seven gro bi-mo eight two el four dek el four �ve
But to speak this, we must recall that “bi-mo” means “106” (though it has nothing

indicating “6” in it), we must count out the digits, we must see that we’ve got seven
gro of bi-mo, and then voice the number accordingly. Doable, certainly; but excessively
complex as well as too provincial in its roots.

In SDN, we simply count the digits after the �rst (eight), select the corresponding
and very familiar numerical particle (oct), add "qua" to it (since it’s clearly a large number
rather than a small one), and we’ve got the answer:

Seven octqua eight two el four ten elv four �ve
SDN is at once simpler, more comprehensive, and more international than other

systems.
Of course, there is no need to give up traditional ways of speaking; one may as well

attempt to prevent metric countries from selling their meat in half-kilogram “pounds.”
SDN can replace native modes of speaking in dozens (your author has used it such for
some time), but it need not. It does, however, provide a way of speaking in dozens which
is acceptable to the whole of the international community, while at the same time being
thoroughly dozenal in its principles and its intent.

The primary inventor of SDN, John Kodegadulo, has prepared a full exposition of
the power of the system, which space unfortunately did not permit for this issue; but
look forward to that exposition in the nextDuodecimal Bulletin. · · ·· · ·· · ·
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You are invited to join the Dozenal Society of America!  
The only requirement is a constructive interest in duodecimals!

Dues include a subscription to the Duodecimal Bulletin. 
We depend on you! Annual dues are due as of 1 January. Make your checks for only one 
dozen six dollars ($18.) payable to the Dozenal Society of America and receive an elec-
tronic copy of the Duodecimal Bulletin, or be a Supporting Member at three dozen dollars 
($36) and receive a paper copy of the Duodecimal Bulletin. Student dues are $3. A limited 
number of free memberships are available to students. As you know, our continued work 
depends very much upon the tax deductible dues and gifts from our Members.

Subscription Form	 (Please print clearly)
Name	 _________________________________________
	 LAST	 FIRST	 MIDDLE	

Address	 _________________________________________
	 STREET	

_________________________________________
	 CITY	 STATE/PROVINCE	 ZIP+4 / POSTAL CODE	

_________________________________________
	 COUNTRY

Phone	 _________________________________________
	 HOME	 WORK	 FAX

E-Mail	 _________________________________________
	

Degrees	 _________________________________________

Other Society Memberships	 __________________________
To facilitate communication, do you grant the DSA permission to fur-
nish your name and contact information to other DSA Members? ☐Yes    ☐No
Students please furnish the information below:
School	 _________________________________________

Address	 _________________________________________

Class	 _________________________________________
	 YEAR	 MATH CLASS	

	 _________________________________________
	 INSTRUCTOR	 DEPARTMENT
We’d be delighted to see you at our meetings, and are always interested in your 
thoughts and ideas. Please include your particular duodecimal interests, comments, 
and suggestions on a separate sheet of paper.
Mail this  
form and 
payment to: 

The DOZENAL Society of America
472 Village Oaks Lane
Babylon LI NY 11702-3123

JOIN THE DSA TODAY!
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