‘,,\lll ¥
‘v@
"wa.

17 ‘A0 uepsen

863100 Aunwwoy nesseN

0ESLL AN

JuswBsdaq ylew o/o

VOIHINY 40 ALFID0S TYNIZ0a

ISSN 0046-0826

713

IE
UODECIMAL
 ULLETIN

® & ® 00 000000000 D>OOGOGOGEOSEDLOEDSOGS

DUODECIMAL CHRONOLOGY

- See Page 4

@ 6 &0 660 ¢ 900 & 00
® ® 5 50 @ ¢ 000 00

00000800 00060606002000¢60808000C 1994

1994 ANNUAL MEETING
October 15, 1994

- See Page *;.

Volume 37,
Number 2;
1994
11+2;




THE DOZENAL SOCIETY OF AMERICA

(Formerly: The Duodecimal Society of Amertica)

is a voluntary, nonprofit, educational corporation, organized for the conduct of research
and education of the public in the use of base twelve in numeration, mathematics, weights
and measures, and other branches of pure and applied science.

Membership dues are $12.00 (US) for one calendar year. Student Membership is $3.00 per
year, and a Life Membership is $144.00 (US).
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HISTORY OF THE DUOC-DECIMAL, BASE 12,
DOZENAL IDEA, CHRONOGICALLY

Fred Newhall
Smithtown, NY

Fver since the ancient beginnings of arithmetic, I am certain many philosophers have
considered other bases than ten, and have realized the efficiency of Base 12. So I'd like
to list chronologically actual written excerpts of references to duo-decimals by date,

author, book and quotation:

2500-606BC Babylonians, see Encyclopaedia Britannica V3, 107d

1585 Simon Stevin - L’ Acithmeticue
[But see this Bulletin, Whole Number 52; p 17; -Ed.]
1665 Blaise Pascal - De Numeriis Multiplicibus
1670 Bishop Joannis Caramuel - Mathesis Biceps, Vetus et Nova (bases to 12)

1682-1718  King Charles XiI of Sweden

1687 Jordaine 2 books, see Books About Duo-Decimals
1740 Christopher Frideric Velinagel - Numerandi Methodi (bases 2-12)
1747 Johann Albert Berchenkampf - Leges Numerandi Univerales
(bases 2013, 15, 24, 30)
1760 Georges Louis Leclerc, Compte de Buffon - Essai d’Aritmetique Morale
1784 Encyclopedie Methodique - chapter on Echelles Arithmetique
1790 Pierre Laplace - Systeme du Monde “In truth, our arithmetical scale is nof

divisible by three and four, two divisions whose simplicity render them
very common. The addition of two new characters is sufficient to procure
this advantage, but a change so important would have been infallibly
rejected with the system of measures which was attached to it. Moreover,
the duodecimal scale has the inconvenience of requiring that we retain the
products of twelve numbers which surpasses the ordinary length of memory
to which the decimal scale is proportionate.”

1799 J.F. Montucla - Histoirie des Mathematiques (bases include duodecuple)
1801 Haser - Anleitung zum Rechnen nach dem Duodezimal- system
1808 Garnier-Deschenes - Recherches sur L’origine du Calcul Peter Barlow -

Duodecimale

(Continued)
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1810 Zehner - Die Zwolfsysteme zum Zahlen und Rechnen
Baron von Humboldt -

1822 John Playfair - Base du Systeme Metrique Decimal
1844 Pujals de la Bastida - Filosofia de }a Numeracion - - Napoleon Bonaparte-
1849 Breithaupt - Das Duodecimal-system Fischer, Cassel
1855 Sir Isaac Pitman -
1858 Cautier - 3 books, see Books About Duo-Decimals.
1866 Thomas Leech - Dozens versus Tens pages, Robert Hardwiche, Lond
(only copy at Columbia University cannot be loaned out). , "
1871 Horstig - Das Arithmetische Duodecimal-system, Leipzig
1875 Nystrom - 2 books, see Books Mentioning Duo-Decimals
1884 Perry - The American System of Mathematics
1884 Grunwald - Saggio di Arithmetica, Verona
1884 Totten - An Important Question in Metrology
1897 Iliert?ert Spencer - (provision in his will to promote ducdecimals)
gainst the Metric System, Appleton, NY
1911 Encyclopaedia Britannica V3 107d, V18 137a
1913 Elbrow - The New English System of Money, Weights, etc
(Continued)

;’:: DleA d(l)es .NOT gndc?me any particular symbols for the digits ten and eleven
: ulru ormity in publications we use the asterisk (¥) for ten and the octothorpe (#j
or eleven. Whatever symbols are used, the numbers commonly called “ten”

“
eleven” and “twelve” are pr “
et pronounced “dek”, “el” and “do” in the duodecimal

When it is not clear from the context whether a numeral is a decimal or a dozenal

we use a period as a unit point for base ten ;
. R and the semi-c: :
as a unit point for base twelve. olon, or Humphrey point,

Thus 1/2 = 0.5 = 0;6.




6 History of the Duo-Decimal, Base 12, Dozenal Idea, Chronologically
1926 D’Autremont - The Duodecimal Perpetual Calendar
1934 F. Emerson Andrews - Atlantic Magazine “Excursion - -”

Many articles and Books.

1935 Norland - The Twecimal System
1937 J. Halcro Johnston - The Reverse Notation
1938 Terry - 3 books, see Books About Duodecimals

F. Howard Seely
Chas. Q. DeFrance
1944 Meeting to incorporate D-D Society under laws of NYS.

1944 George Bernard Shaw - Letter to London Times “Basic English is a natural
growth which has been investigated and civilized by the Orthological
Institute on the initiative of Mr. C. K. Ogden, whose years of tedious toil
deserve a peerage and a princely pension. The only job comparable to it is
that of an American George S. Terry, who has given us the tabies of
duodecimal logarithms.”

1949 GBS letter to a music publisher “I am greatly taken by Mr. G’s (Godjevatz)
plan. - - - Its adoption - - - would teach people to count duodecimally with
two new digits: - - - as duodecimal arithmetic is a coming reform. - -”

1944- All the officers and contributors to DSA and to DSGB and the Editors of
their periodicals!

1955 Essig - Douze: Notre Dix Futur

1985 Pendlebury and Thomas booklets; Dixon - Reciprocals.

I would like to add to or correct this chronology with exact quotes and
accurate dates, so I welcome any suggestion.

O

—

Do you keep a copy of our DSA brochure or of Andrews’ Excursion at home and in
the car? You never know when you might want to give one to a friend. Be sure to

always have one on hand. J

[

A Surprising Cycle of Length i2

A SURPRISING CYCLE OF LENGTH 12

Monte J, Zerger
Adams State College
Alamosa, CO 81102

Let the first four terms of an infinite
sequence be any four real numbers x
such that X, #X, X,. Define all other terms recursively by v T X,

Xn«-t xn-[

%= , n=5.6,7,..

X Xpp =X

This sequence will
2,3, ...q Hl endiessly repeat a cycle of 12 numbers. That is, X =X, fork=1,

F . . .
or example, if one begins with the first four natural numbers, then the 5th term is (W@y

((M)(@3) - 2) = 4, and the sequence formed is

Iy A

1, 2, 3, 4, 4, 8/5, 3/5 1, 5 8, 12/5, 4/5, 1, 2, 3 4

;Llessezsyg to yzritff); that this cycle is independent of the orj ginal four numbers chosen, if one
ot mind the necessary algebra. I took the eas i , )
. Y route and enlisted the aj
mathernatical software package, DERIVE, to show that ifx, X, X,, and X, are aa lg 2fatrl:cel
y S 4 » DY

d, then
ad
X5 =
ac -b
abd
)(6 =
(ac-B) (bd - o)
ac
X., =
bd-c¢
X, = ac-b
Xy = bd-¢
bd
X = —_—
ac-b

{Continued)
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8
acd
ad
X3 = 2,X,=bX,=¢,X,=4,..

3 i t was
According to Martin Gardner’s The Magic Numbers of Dr. Matrix (p. 305), this fac
first discovered by J. H. Conway. -

FERRATA

Cops! We goofed.
(a) In Volume 35; Number 1; page 15; line 3 of the first paragraph should read F.C.S.

b) In Volume 35; Number 2; page 15; Bill Crosby poi.nts out ‘t‘hat'hel v:or:ed a;
(Dz)zrthmouth Colle,;'e. Incidently, Bill is the author of the item on “Unicals” on pag

9; Volume 1; Nurber 2; of this Bulletin printed back in 1945!

: ; line sum of 7 and 36 should, of course,
35; Number 2; page 6;, the last /ar .
© (in4¥(;l;<fl:ot 36. (We are in the decimal base here.) Similarly, four lines above,
rea . nal b
the reference to ‘the sum (38)” should likewise be 43,

Incidently, does 7 + 36 = 38 in any base? How about in modular addition?

nci s

The above two questions were posed by Gene Kelly whose resolution js printed
e a

below:

(i) There is no base in which 7 + 36 = 38.
(ii) 7+ 36 = 38 (modulo 5).

(d) In Bulletin 72; page 2, Class of 1996, our third member of the board is Tony
Scordato.

. . 4
(e) The cover of Bulletin 72; should be In Memoriam: A Duodecimal Legen

. , imal
(f) In Bulletin 72;, the title of Jay L. Schiffman S paper sh?ul: bﬁeguOdeama
Combinatorics. The top heading on pages 9;-13; is incorrectly spelled.

L ]

Mechanical Simulation 9

MECHANICAL SIMULATION

Ed Nu

All your life you’ve been funning on 2 cylinders, of a powerful 4-cylinder matheratical
engine! One and two divide jnto tenevenly, but your third and fourth eylinders would work
fine if your engine were luned to base twelve. One, two, three, and four divide into twelve

You could own a shiny limousine if you would trade in that sickly old-fashioned worn-out
base 10 heap! We are selling a Dozenberg with a powerful engine; the car of the future;
guaranteed to outrun any Infiniti! |t is the equivalent of a 12-cylinder engine at only a
fraction of the cost in learning and teaching. Take a trial run in our demonstration mode]

’

and friendly information concerning our worldwide membership. When in England, visit
the Dozenal Society of Great Britain in Moulsford, Oxford; Denmead, Hampshire; Leigh-
On-Sea, Essex; and others, We have “sales reps.” (members) in Diamond Harbor, New
Zealand; Armdale, Australia; Sokoto, Nigeria; Bombay, India; Beijing, China; Espoo,
Finland; Paris; Sao Paulo, Brazil; Lisse, Holland; and other Xotic places. Of course, we
have many in Canada, Alaska, Hawaii, and interstate USA.

Our older model, the XE, even though it sti]] excels any other base, is being replaced by
our phone-compatibfe model, the *#. You wil] enjoy driving any other of our custom-built
models, as well, since they all have better eX-El-eration than any other number systems
on the road.

Dozen it make sense 1o promote the best? Just fill out the sales slip on the back of any of
our publications and include the €asy payment in an envelope to:

DOZENAL SOCIETY OF AMERICA
Nassau Community College, Math Dept.
Garden City, L1, New York 11530

—

Do you know of a friend who would appreciate a sample copy of our Bulletin? Just
send us his or her name and address and we’|} be happy to oblige.




i Announcement of Our Annual Meeting

AMNGCUNC .. INT OF OUR ANNUAL MEETING

Saturday, October 15, 1994
Six Brancatelli Court

West Islip, LI, NY

10:30 AM

The 1994 Annuat Meeting of The Dozenal Society of America will take place on Saturday,
October 15, 1994 at the home of Gene & Pat Zirkel, active board member§ 9f The Dgzenal
Society. This location will constitute a change of venue from our traditional sefting at
Massau Community College in Garden City, LI, NY.

As in previous years, we will commence with The Board of Directors Meeting to be
immediately followed by The Annual Membership Meeting.

We are looking forward to two presentations in the aﬂernpon ‘session,. Rafael Ma;gnf),:i
mathematics professor at Nassau Community College who is Vice Pres1dt,mt O.f the ciety
will present his paper entitled “IF WE ONLY HAD TWELYE FINGERS whlch pr?mlsles
10 be illuminating. Jay L. Schiffman, President of the Society and a mathematics facu ty
member at Rowan College of New Jersey’s Camden Campus will speak on the topic
entitled “THE PERSONALITY OF DUODECIMAL INTEGERS FROM ONE TO ONE

GROSS”

For a geod time both cducationally as well as socially, be sure to mark this 'date on your
calendar. We will be extremely disappointed if you miss our Annual Meeting. -

)l ' FOLLOWING ARE AVAILABLE

o

[ FROM THE SOCIETY
1. Ou- brochure. (Free) .
¥ 2. «pp Excursion in Numbers” by F. Emerson Andrews. Reprinted

from the Atlantic Monthly, ~October 1934. (Free)

jvirnual of the Dozen System by George S. Terry. ($1;00)
i igy #umbers by F. Emerson Andrcws. ($10;00)
~o  al Slide Rule, designed by Tom Linton. ($3;00)

6 - issues of the Duodecimal Bulletin, as available, 1944 to
gsoni. (84;00 each) )

7. “~pi: A Coherent Dozenal Metrologyby T. Pendicbury (81,00)

2, sod:1ar Counting by P.D. Thomas (51,006)

The : dodular System by P.D. Thomas ($1;00)

Letter to the Stony Brook Archives #

LETTER TO THE STONY BROOK ARCHIVES

The following is the text from a letter written by our Jate President Fred Newhall regarding
a very dynamic work on Dozenals:

Wednesday, March 24, 1993

Mr. Evert Volkersz, Archivist, Special Collections

Main Library

State University of New York at Stony Brook

Stony Brook, N.Y. 11790

re: Thomas Leech “Dozens vs Tens, etc.” 1866
and Dozenal Index

Dear Mr. Volkersz,

This is the oldest book in English published on this important fundamental idea of Base
12 Arithmetic. The only copy in this area was carefully preserved in the Columbia
University Library Archives.

We were fortunate in having one of our members in The Dozenal Society of Great Britain
duplicate a copy from the Cambridge University Library. He sent us the copy which I have
had made into several new books. Isent one to Columbia University , and we have one in
our Dozenal Office at Nassau Community College.

Although the book was written 125 years ago, the ideas expressed in the book never get old,
so that our Society feels that the book was an important achievement in the history of
mathematics. Please register this gratis copy in your library for general circulation.

As you may remember, I have a 3-volume looseleaf book “12 Is Best” in your Special
Collections Department. Asa supplementary volume to it, I should like to donate this copy
of my Dozenal Index, also in looseleaf form so that it also can be updated occasionally.
This is a Comprehensive Index to all of our 149 publications by both the American and

Great Britain Dozenal Societies since the year 1945, so is a valuable reference for research
on Base 12 mathematics.

We appreciate your generous cooperation.

Fred Newhall

Do you have an idea to share with our members? Why not submit an article to the
Bulletin?
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THE NON-UNIQUENESS OF NON-INTEGRAL BASES

Brian M. Dean
Ohio

Most readers of the Duodecimal Bulletin are very familiar with integral number bases
(bases like 2, 3, 4, etc.) Depending on our mathematical skills, we have little trouble

understanding and/or using such bases.

Some time ago, Gene Zirkel wrote a series of articles entitled “Strange Bases™! which dealt
with bases that are not positive integers greater than 1. I will not go quite as far as Gene
did in that I won’t consider bases that are negative, or complex. I will be restricting my
paper to a discussion of bases that are positive, but don’t fall into the category of being
integral. The most interesting property of such bases is that any number can be represented
in at least two totally different ways and this will be the main emphasis of the paper.

In 1984, when I was a student at Bowling Green State University, a good friend of mine,
Steven Gunhouse, brought to my attention that the base

VS+1
2 (the well known GOLDEN MEAN)

had the property that 1 =0.11 in the base. This signifies that this base, which we will rename
as base b,

(b= V5+1
2 )

has the property

1+1 =1
b b?

I will let the reader verify this. Also, since 1 = .11, it would make sense that .11 =.1011%;
for .11 = .1 + .01 and .01 = .01 x .11 (because 1 = .11).

.01 x .11 =.0011, so therefore .11 =.1 +.0011 =.1011. You can then ve ify that ,10I11 =
.101011 using the same process and in fact you can carry this process out as many fimes
as you desire and you will conclude that 1 =.1010

The Duodecimal Bulletin, Vol. 2*, No.2, p. 6 (Part I of article); Vol. 2%, No. 3, p. 10 (Part
II); and Vol. 2#, No. 1, P. * (Part III).

(Continued)
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One can also verify that . 1010 =.017T1. I leave the proof of this up to the reader. This shows
that there are an infinite number of ways in which 1 can be represented in base

Yi+1

2

Now I will expand this idea to jnclude any positive non-integral base. The idea of the same
number being represented in more than one way should not be totally surprising. Even in
our favorite base, 1 could be represented as the repeating fraction O;###. However, if you
use any non-integer base the different representations are usually quite strange.

Let us examine the base b = #6. (I will use a period () for a fraction point in base #6, and
a semicolon (;) if the number is in our favorite base.) If you observe a typical two digit
number in this base (call it ab), then both a and b could be represented by any of the digits
ranging from 0 to #. This generates 10; different possibilities for each digit and therefore
ab could possess 100; different representations.

If we examine the number ##, itis #5;6 in our favorite base, then we notice this is less than
100;. Now (#;6)* = #0;3. Therefore in base b¥#;5, 100, < ##;. Since the value of 100, lies
somewhere between 0 and ##, it is reasonable to assume that there is some numeral on that
interval that equals 100, even though we might need some sort of expansion for it (such
as ab.cde... where the ... connotes that the expansion continues past what is shown (for
example, V2 = 1;4#...)). In fact if you toy with this base enough, you will find that 100 =
#5.872191*23...

I will next briefly discuss a method of obtaining diverse representations of different
numbers given a non-integral base. First, I will discuss a procedure concerning how I
usually go about converting normal things (like base dek to base 10;). Most of you are
probably familiar with doing this, but I would like to go through it so that the reader might
more easily modify my methods to suit his or her own needs or interests.

Firstof all, if I am given a number such as 56.34 in base dek to convert to our favorite base,
I treat the 56 and the .34 separately. Y convert 56. to 48; in the usual way, but the way I
treat .34 might be slightly different so I will explain it. The idea is that we want to move
the dozenal place over one place to look at each integer. Soif you imagine .34 symbolically
as a dozenal number, the way you would look at the first digit after the dozenal point is to
multiply by 10;. Since we don’t have an easy algorithm to multiply a base ten number by
a base twelve number we are stuck with using 12. instead of 10;.

Now .34 * 12 = 4.08, so our first digit after the dozenal point is 4. This gives us 56.34 =
48,4.,, Now we subtract the 4 to get .08 and repeat the process again to get the next digit.
Since .08 * 12 = 0.96, we obtain 0 as our next digit. We then repeat the process In light
of the fact that .96 * 12 = 11.52, our next dozenal digit is #. You can repeat this process
to yield as many dozenal digits as desired. (56.34 = 48;40#62%68...)

(Continued)
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Let us next consider the base V2. Sincev2 = 1;4#... we could consider 1 as a fraction instead
of an integer and look at the first number after the . (in base v2) by multiplying and gefting
1;4#... and then continuing the process to generate additional numbers. If you continue this
for a while you will eventually obtain.1001 00000100100000000100001... and this is equal
to 1 if you are employing base V2.

If we were to decide not to subtract the 1 right away and multiply by VZ again we have 2,
but we can treat this as a 1 + decimal and subtract 1 to get a 1 remaining. Since we delayed
subtracting 1, our first number after the point is 0 and if we continue the process we get
.01100100000100100006000100001...

The question is then the following: Can we go indefinitely before we subtract 17 The
answer is no, because if we go too far we will obtain such a large number that after we

subtract 1 and then multiply by V2 again, we will arrive at a larger number than the one we
initiated, and this will yield an incorrect response.

Thus the largest number we can use in this algorithm is the sojution to the equation
VZ(x-1)<=x

Thus we could go as high as 3. Then if we subtract 1 to yield 2 and then multiply by V2
we will end up with something less than 3. If we continue the process we will obtain
something that will converge and give us a correct answer. If you try this with 1 and go
as high as you can before subtracting 1 all the time you will get
,0011011111031011111111011110111101110...

One of the things that interested me about Gene's articles, “Strange Bases”, is the fact that
you can devise an algorithm for adding, subtracting, multiplying, and dividing in a base
such as vn. For those of you who have forgotten, or for those of you who have not read
the article, the manner in which you add in base vh is exactly the way you would add in
base n, except that if there is a carry, you carry the number over ftwo places instead of one.

What 1 have been experimenting with is taking two different representations of the same
number in a certain base and using the algorithms for adding and dividing to come up with
a different representation.

(Continued)

THINK 12 . . twelve .. .10;...do.......
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For example, we could add two different representations of 1 in base V2 and then divide
by 100 (which is the same as 2 in this base and has the effect of moving the point over two

places, just as in any other base). If we try this with 1 and .1001000001001... we arrive
at

1 +.1001000001001... = .011001000001001...
100

which is a number that we obtained earlier. If you use the algorithms given in the article,
some representations for 1 might be easier to derive than using the method above.

In closing, I would like to say that perhaps the best way to see different representations of
different numbers in certain bases is to experiment on your own. 1hope that these different
representations will make these strange bases more attractive rather than less so (but
perhaps this is too much to hope for!)

Most people, I feel, would find representations such as 1 = .1001 unattractive. This is
because they might feel either that the answer which they produce is wrong, or conversty,
that any possible answer would be correct (both of these feelings are unfounded). I hope
that at the very least, this paper will stir some interest in studying strange bases in the future.

"The Duodecimal Bulletin, Vol. 2*, No.2, p. 6 (Part 1 of article), Vol. 2*, No. 3, p. 10 (Part
1I); and Vol. 2#, No. 1, P. * (Part III).

O

DON’T KEEP THIS MAGAZINE

Do you discard your copies of the Bulletin after you have read them? Or do they
gather dust on a shelf in your attic? Why not pass them along to your local library,
or to a school library. Perhaps some nearby math teacher would appreciate a copy.
You can also just Jeave them in a dentist’s office or other waiting area.

Help spread the word!

(If you ever need a back copy, we’d be glad to help.)
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JURASSIC VIDEO

Mark Schubin

NEED A DATE FOR THE ORIGIN OF DIGITAL? How about 395,000,000 years ago?
That’s about 205 million years earlier than the beginning of the Jurassic Period.
Crossopopterygii, lobe-finned fish, predate not only mathematicians but also dincsaurs.

Sometime in the Devonian period, it seems, a {ish was born with bony fins that eventually
evolved into paws, feet, and hands. Able to walk on land, the descendants of that fish also
developed lungs, which is why the modern loalach of the opening paragraph of this column,
a fish with lungs but no gills, will drown if kept under-water.

The fin bones of Crossopterygii included those that would eventually form what the ancient
Romans would call digiti, fingers and toes. There were certainly many genera that evolved
between the Devonian Crossopterygii and the Roman Homo, but while experiments have
proven that modern animals have a sense of number, there’s no evidence that they can
count. Human’s can, often assisting themselves by touching parts of their bodies.

There have been cultures that have counted knees, elbows, and other readily identifiable
body parts. Today, we usually count only o fingers, but the French quatre-vingts and the
English “score” indicate that it wasn’t all that long ago that we stopped using our toes, too.

Ten fingers led to the base-ten number system, but, other than its human-hands orentation,
there’s not much to recommend it. Near Bombay, the base-five Maharashtra number
system can be counted on one hand. The ancient Sumerians used a base-60 (sexagesimal)
system, vestiges of which remain in the way we tell time and use a compass. Sixty has the
advantage of being divisible by all six of the first positive integers.

In the Eighteenth Century, the French mathematician Joseph Lagrange proposed a number
system based on primes, indivisible by anything but themselves and one (but was also
responsible for the metric syster’s decimal base). His contemporary, naturalist George
Buffon, argued in favor of shifting to base-12 (duodecimal) to retain at least divisibility
by all positive integers through four; the Duodecimal Society of America keeps the latter
idea alive with its numerals from zero through nine ptus X and E (the last two pronounced
“dek” and “el”).

Buffon and Lagrange both had the advantage of printed numerals, said to be Arabic,
though, in fact, the symbols we use for four and five were developed in Europe, our zero
came from India, and, can be traced to other non-Arabic cultures. About the only thing
Arabic numerals have in common with each other is that they are not finger-based, like
Roman numerals (I is the shape of a finger, V is a hand with the thumb spread, and X is
two hands wrist-to-wrist.)

(Continued)

Jurassic Video 15

The term Arabic numerals is simply one of many we use to honor abu-Ja’far Mohammed
ibn-Musa al-Khowarizmi, an early-Ninth-Century mathematician in the court of Mamun
in Baghdad. Latin translations of his works brought not only Arabic numerals but also
much of medieval Europe’s mathematical knowledge. The first word of his book Al-jabr
w’al-muqa-balah became what we now call “algebra”; the last part of his name is familiar
to those working in digital video as “algorithm.”

Even today, however, machines cannot always read hand-written Arabic numbers accu-
rately. A modern European might write a one in a manner looking remarkably like an
American’s seven. Accordingly, Europeans place a dash in their sevens, but Americans
don’t. Computers are easily confused by those variations and others. Is a dash very close
to a seven part of a nurgeral, or is it a minus sign? Is a strange-looking cross a crudely drawn
four or should it be a plus sign? The only number system clearly distinguishable to a
machine is one consisting only of two states: on or off, yes or no, present or absent, one
or zero.

No one can say who first considered a base-two (binary) number system. The concept
appeared in Khowarizmi’s work, but it had certainly also been known to earlier thinkers.
Long before the first electronic computer graphics or music devices, machines, operating
on binary mathematical principles, created both graphics and music. One such music
machine, an ancient form of organ, was excavated at a Roman archeological site just north
of Budapest.

It wasn’t until the Twenticth Century, however, that binary mathematics was applied to the
recording, transmission, or manipulation of sounds or pictuces. The problem was largely
technological. First, there weren't even electronic sounds (let alone pictures) to record,
transmit, or manipulate until the end of the Nineteenth Century. Second, the circuitry
required to digitalize even a simple telephone call didn’t exist until shortly before that feat
was achieved, in 1939 (it was the analog-to-digital converters that slowed things dowr;
digitally generated speech and music predated the digitilization of sound, just as computer
graphics predated the digital video timebase corrector and international standards con-
verter).

Scientists working on digital signals weren’t even able to use today’s common term for the
little pieces of information they dealt with until 1948. In July of that year, in the Bell System
Technical Journal, Claude Shannon, considered by many the creator of information
theory, credited J.W. Tukey with suggesting a contraction of the words binary digit into
bir. But the word digital definitely comes from the Latin digifus, which means fingers and
toes, and they all came from a fish that lived huadreds of millions of years ago.

Editor’s Note: This article has been reprinted with permission from both the author and
the magazine VIDEOGRAPHY SEPTEMBER 1993




16 Puzzle Solutions

PUZZLE SOLUTIONS

Charles Ashbacher
Hiawatha, IA 52233

The following is a proposed solution to the base number puzzle that appeared in Bulletin
69;.

In every base b, there is always a three digit number which is equal to the sum of its digits
multiplied by (b+1). In base two the number is 110 since
(1+1+0)*(11) =10 * 11 = 110.

Can you find the three digit numbers with this property for all the bases from three through
do-one?

Here is a proposed solution:
The numbers are:
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This pattern represents an algebraic identity. If b is the base, then
1(b-1)(b-2)=b2+b{b-1) +b-2=2b%-2

1+ (b-1) +(b-2) =(2b-2)

and (2b-2)(b+1) =2b%-2b +2b -2 =2b%- 2.

Editor’s Note: Gene Zirkel also provided a fine solution in Bulletin 6*;.

Remember — your gift to the DSA Is tax deductible.

Fuzzle Corner 17

U . EC

The Fall 1195, issue of the Bulletin has an interesting problem:

find dozenal numbers (the Society prefers “dozenal” to “ducdecimal”) that ate exactly
twice as Jarge as their decimal conterparts. One answer is 11788. Quite right:

(1)(A2% + (1)(A2%) + (7)(12% + (8)(12) + 8 = 23,576 = (2)(11,788).

Other solutions, the Bulletin says, are

11790, 11818, 11820, 12298, 12328, 12330, 24658,

24660, 25168, 25170, 25200, 36988, 36990, 37528,

37530, 38038, 38040, 49858, 49860.

Are those all of the solutions? What about dozenals that are three of four or five times as
large as base-ten numbers with the same digits? Dozenals can raise interesting questions.

Solution by Charles Ashbacher of Cedar Rapids, IA.:
On Page 27 of the book Mathematical Crarks, Underwood Dudley gives the problem
Find dozenal numbers that are integral multiples of their base 10 counterparts.
He provides a list of solutions where the multiplying factor is 2.
I have found the additional solution
34798, = (2)(37498,)
for a multiplying factor of 2 and the two solutions
158662568, , = (4)(158662568, )
159006368, , = (4)(159006368 )

where the factor is four.

(Continued on page 19;)

“Each one teach one.”
-- Ralph Beard, Founder of the DSA




i8 Some Ideas for the Reader's Perusal

SOME IDE/ S FCRT! [L READ ’'SF I JSAL

Gene Zirkel,
Nassau Community College,
Garden City, LI, NY 11530

The concept of weights and measures is vital in various situations including governmental
studies. To cite an example, many cities incorporate a bureau of weights and measures as
part of their operation. The foltowing brain twisters will serve to test the interested reader’s
knowledge of such ideas:

A WEIGHTY QUESTION:

Which weighs more: an ounce of feathers, an ounce of sitver, or an ounce of pearls?
Answer to A WEIGHTY QUESTION:

A pound of feathers is heavier than an ounce of silver which, in turn, is heavier than an
ounce of pearls! (If you can’t figure out why this is so, see below.)

WHICH 1S HEAVIER?

Feathers are weighed using the Avoirdupois scale, silver is weighed using the Troy scale,
and pearls are weighed using the Diamond and Pearl scale, and

1 ounce Troy = 340; (480) grains Troy
1 ounce Avoirdupois = 305;6 (4374) grains Troy
1 ounce Diaroonds and Pearl = 288 3112 (428%%%%) grains Troy

And now, which is heavier: a pound of feathers or a pound of silver?

Answer to WHICH IS HEAVIER?

Since a Troy pound (one dozen Troy ounces) is only 3400; (5760) grains Troy, while an
Avoirdupois pound (1% dozen Avoirdupois ounces) is 4074; (7000) grains Troy, the answer
is the reverse of the former answer. This time the silver is heavier than the feathers.

Symbols for Dek and EIl 19

LYR LS FO EK AND EL

Recently Paul Schumacher sent us the dozenal papers of his deceased father, William
Schumacher. Among the papers was some correspondence about symbols for dek and el.
Bill proposed a reversed 6 and a reversed 9. They are similar in appearance to our familiar
numerals and they easily lead to 7-segment calculator displays.

In response to Bill’s suggestion, Don Hammond of England wrote that Bill’s idea of a
reversed 6 for dek was very close to the Dozenal Society of Great Britain’s proposal of a
modified rotated 2, and the reversed 9 was somewhat similar to their rotated 3. Don noticed
that Bilf’s reversed 9 looked like a lower case ‘e’ while the DSGB’s rotated 3 was similar
to an upper case ‘E’. Don suggested a 7-segment display of an upper case E without the
upper horizontal line (an inverted F), similar to the DSGB’s modified rofated 3. See the box
below for the DSGB’ s modified dek and el.

dek el
Dwiggins X €
DSA * #
DSGB Cod

Don

Bill a

© 7|7

Puzzle Corner (Concluded)
Butletin 53; Winter 1986 issue posed the following problem:

The repeating decimal .333... in base ten arithmetic represents the fraction 1/3. What
fraction does it represent in base twelve arithmetic?

Solution by Jay L. Schiffman, Rowan College of New Jersey-Camden:

In base twelve, consider 0;333.... This represents the infinite geometric series 3/10; + 3/
10;% + 3/10;* +... with first term a = 3/10; and common ratio 1/10;. Using the formula for
the sum of an infinite geometric series S = a / (1 - r), we obtain

S =3/10; /(1 - 1/10;) = (3/10;) / (#,/10;) = 3/4#,;. O




1% Pascal's Triangle: A Table of Duodecimal Binomlal Coefficients

PASC/ °S7 ANC.oL )
A Table of D ode * "3 ialCo ¢’ >nts

Jay L. Schiffman
Rowan College of New Jersey, Camden City Center

n! n(n-1)...(n-k+1)

C(ﬂ,k) = =
k!(n-k)! k!

= C(n,n-k), 0! =1

Note that each entry in the following table (which is often called Pascal’s Triangle) is the
sum of two numbers in the row above; one of these numbers is in the same column and the
other is the preceding column (e.g. ((9,3) = 24 + 48 = 70).

The above important combinatorial identity can be stated as follows:

C(n,k) + C(n,k+1) = C(n+1,k+1).

Since each row in the table is symmetrical- as in a palindrome - to obtain values for k >
10, use the identity

C(n,k) = C(n,n-k).

We now construct the first two dozen rows of Pascal’s Triangle in The Dozenal Base.

(Continued)

Roman Scruples

In Number Words and Number Symbols, A Cultural History of Numbers by
Karl Menninger published by the M.1.T. Press, Cambridge, Massachuseits
and London, England there is an account of Roman Duodecimal Fractions.
The author demonstrates the earty use of twelfths in ouances and inches. It
seems our forebears commonly expressed fractions such as 5/9 as approxi-
mately 7 unciae or iwelfths.

Note that 5:9=20%36=20:3x1212=20:3=6 223 or 7 unciae.

o

For more accurate work they would break the unciae down into two dozen
scruples and express § 2/3 unciae as

6 x24 + 2-3 x 24 =144 4+ 16 = 160 scruples.

Pascal’s Triangle: A Table of Duodacimal Binomial Coefficients 1#

/K 1] 2| % 4 s 6 7 8 9 . ] 10
N

1 1

2 2 i

3 3 3] ¢

4 4 6| 4 1

5 5 * 5 1

[ 6 13| 18 13 6 1

7 71 19| 2¢ 2 19 7 1

8 B} 3% a8 | s* 48 24 8 1

e 9] 30| & ‘6 *6 70 30 9 1

he *139] *0 156 190 156 *0 39 * 1

# #| 47| 119 236 326 326 236 119 47 * 1

10 10] 56| 164 353 560 650 560 353 164 56 10 1

11 11| 66| i# 487 8 H3 HHO 843 447 14 68 11
12 12| 77] 264 &#S 1% 1843 140 183 11°* 6#5 264 77
13 13| B[ 31# | 959 18*3 | 2°91 3883 3883 2¢91 18*3 959 31#
14 14} *0| 38 | 1078 | 2640 | 4774 6754 7546 6754 4774 2640 1078
15 15 #4| 488 | 1464 | 36#8 | 7i#4 #308 1209* 1209 #308 1144 3648
16 161109 ] 580 | 1930 } 42360 | 98#0 16500 2136 | 24178 2136 16500 hd

17 171123 | 689 | 2280 | 6890 | 13850 251%0 378°6 | 45562 45562 378%6 251%0
18 18]13¢ | 7#0 | 2979 | 8#80 | 1*520 3840 6096 | 81248 84404 81248 60°96
19 £9 1136 | 92* | 3569 | #939 | 274*0 57360 99916 | 122122 | 150150 [ 150150 | 122122
i* 1*|173 | *84 | 4297 | 132°6 | 37219 82840 135076 | 1##°38 | 29072 | 24020 | 21272
1# 1# 191 | 1037 | S15# | 17581 | 4°503 #9459 1H78#6 | 334*#2 | 4720%° 552552 | 552552
20 20 | 140 | 1208 | 6196 | 20720 | 6584 148360 | 2#5753 | 5307°B | 7T°6K*0 | °*0464D | **4%4

O
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DOZENAL JOTTINGS

...from members and friends.. News of Dozens and Dozenalists

The New York State Math Association of Two Year Colleges holds a precalculus level
math contest each semester. A free one year subscription to our Bulletin was given to the
winners of the recent NYSMATYC contest.

A local paper reported that the Mathleres of Udall School, West Islip, New York scored
well in a recent contest. The Society congratulated them, and sent each member and their
advisors some dozenal literature. (Have you heard of any math team successes in your
area? Send the information along to us, and we’ll be happy to congratulate them. There
may be some future dozenalists among them.)

John D. Hansen, Jr., Member 30#, a reviewer of articles submitted to our Bulletin from
sunny California, was recently appointed Assistant Director of the Wisdom Society. Kudos
from all of us!

It is with a great deal of sadness that the Society announces the passing of Dr. Robert E.
Lovell, Member 122; after a seven year battle with cancer on May 12, 1992. He is survived
by his wife Emily.

Jim Malone, during his tenure in office as Treasurer, often used his own money to pay our
bills when there was a cash flow problem. In effect, Mary & Jim gave our Society interest
free loans.

Recently, Jim erased our last debt to them with the words, “The Society owes us nothing.”
That is, the Malones have donated a substantial amount to the DSA! (Not including the
interest that by right we would owe them.)

We are deeply grateful to Jim and Mary both for their generosity and for Jim®s years of
devoted service.

Mathematics: One of the Liberal Arts by Thomas I. Miles & Doug Nance will be published
by West Publishing Co. in 1996. It contains reference to duodecimal counting and to our
Society,

Why Change? 21

WHY CEANGE?

This same question was probably rife in Europe between the years 1000 and 1500, when
the new Hindu-Arabic numerals were slowly making their inching progress in displacing
the comfortable and familiar Roman numerals then universally used.

Yet, although it took D years, and despite much opposition--(“Who needs a symbol for
nothing?”)--the new notation did come into popular use. Released from the drag of Roman
notation, man’s thinking leapt forward dramatically, and mathematicians discovered a new
dimension in mathematical symbolism. Working with Hindu-Arabic numeration, they
found that the new system better accommodated mathematical statements and facilitated
the working out of ideas. Re-examining their fundamental concepts of numbers, they made
advances in arithmetic, algebra, logarithms, analytic geometry and calculus, and thus
contributed to the explosion of human thought which later became known as the
Renaissance.

In a related development, man awoke to the fact that different number bases could be used.

A parallel to today seems tenable. The notation of the dozen base better accommodates
mathematical statement and facilitates ideation. It, too, is a step forward in numerical
symbolism. The factorable base is preferred for the very same advantages which led the
carpenter to divide the foot into twelve inches, the baker and the grocer (one who deals in
grosses) to sell in dozens, the chemist and the jeweler to subdivide the Troy pound into
twelve ounces. And yet, And yet, thisis accomplished by such simple means that students
in the primary grades can tell why they are better. Literally, the decimal base is
unsatisSFACTORy because it has NOT ENOUGH FACTORS.

Then should we change? Yes, but no change should be forced, and we urge no mandated
change. All the world counts in tens. But people of understanding should learn to use
duodecimals to facilitate their thinking, their computations and their measurings. Base
twelve should be man’s second mathematical language. It should be taught in all the
schools. In any operation, that base should be used which is the most advantageous, and
best suited to the work involved. We expect that duodecimals wiil progressively eam their
way into general popularity because they simplify the all-important problem of the
correlation of weights and measures, the expansion of fractions (1/3 = 0;4) and give an
advantage in calculations involving time and our twelve-month calendar. Perhaps by the
year 2000, (or maybe by 1200; which is 14; years later!) duodecimals may be the more
popular base. But then no change need be made, because people will already be using the
jmore convenient base.

If “playing with numbers” has sometimes fascinated you, if the idea of experimenting with
a new number base seems intriguing, if you think you mightlike to be one of the adventurers
along new trails in a science which some have erroneously thought staid and established
and without new trails, then whether you are a professor of mathematics of international
reputation, or merely an interested pedestrian who can add and subtract, multiply and
divide, your membership in the Society may prove mutually profitable, and is most
cordially invited.

O




22 Counting in Dozens

CO' N .NGIM DOZL.IS

1 2 3 4 5 6 7 8 9 * # 10

one two three four five six seven eight nine dek el do

Our common number system is decimal-based on ten. The dozen system
uses twelve as the base, which is written 10, and is called do, for dozen. The
quantity one gross Is written 100, and is called gro. 10600 is calied mo,
representing the meg-gross, or great-gross.

In our customary counting, the places in our numbers represent succes-
sive powers of ten; that Is, in 365, the 5 applies to units, the 6 applies to tens,
and the 3 applies to tens-of-tens, or hundreds. Piace value Is even more
importantin dozenal counting. For example, 265 represents 5 units, 6 dozen,
and 2 dozen-dozen, or gross. This number would be called 2 gro 6 do 5, and
by a coincidence, reprasents the same quantity normally expressed as 365.

We use a semicolon as a unit point, thus two and one-half is written 2;6.

Place value is the whole key to dozenal arithmetic. Observe the following
additions, remembering that we add up to a dozen before carrying one.

94 136 Five ft. nine In. 5;9'
31 694 Three ft. two in. 3;2
96 3#2 Two ft. eight In. 2;8'
19# 1000 Eleven ft. seven In. #7

You will not have to learn the dozenal multiplication tables since you
already know the 12-times table. Mentaily convert the quantities into dozens,
and set them down. For example, 7 times 9 is 63, which is 5 dozen and 3; so
setdown 53. Using this “whichis” step, you wlil be able to multiply and divide
dozenal numbers without referring to the dozenal multiplication table.

Converslion of small quantities is obvious. By simple inspection lf you are
35 years old, dozenally you are only 24, which 12) 365
is two dozen and eleven. For larger numbers, 12)30 +5
keep dividing by 12, and the successive re- 12)2 +6
mainders are the desired dozenal numbers. 0 +2 Answer: 265

Dozenal numbers may be converted to decimal numbers by setting down
the units figure, adding to it 12 times the second figure, plus 122 (or 144) times
the third figure, plus 12° (or 1728) times the fourth figure, and so on as far as
needed. Or, to use a method corresponding to the illustration, keep dividing
by*, and the successlve remainders are the desired decimal number.

Fractions may be similarly converted by using successlve multiplications,
instead of divisions, by 12 or .

For more detailed information see Manual of the Dozen System ($1;00).
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Application for Membership
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Name

Mailing

We extend an invitation to membership in our society.

Dues are only $12 (US) per calendar year; the only requirement is a constructive inferest,

Application for Admission to the
Dozenal Society of America

UAST FIRST
Address (For DSA items)

MIDOLE

Telephone: Home

Date &

College Degrees

(See beiow for alternate address)
Business

Place of Birth

Business or Profession

Other Society Memberships

Annual DUES ....oocveervieciriennns

Student (Erter data below) .

School

. $12.00 (US)
..... $3.00 (US)

... $144.00 (US)

Address

Year & Math Class

Instructor

Dept.

Alternate Address (Indicate whether home, office, school, other)

Signed
My inte

Daite

rest in duodecimals arase from

Use space below to indicate special duodecimat interests, comments, and other suggestions,

or attach a separate sheet:

Mail to: Dozenal Society of America
%Math Depariment
Nassau Community College

Garden City, L, NY 11530
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