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* Solution ¢ _memberir 1"

SOLUL: N TO “REMEMBERING |

(Winter 1991 -- p. 1#)

In the last issue of the Bulletin we asked readers to provide us with a mnemonic for
remembering the duodecimal value of Pi, which was given as:

3;184 809 493 #91 866 457 3*6 212...
a total of 21; digits.
Our first solution comes from Charles Ashbacher, Hiawatha, IA whose suggestion
contains 15; digits. Pleasc note that since it is impossible to have a word of length

zero, Charles simply placed the word “zero” in that position.

Gee. A computer that displays zero answering time, beguiling all individuals,
beginning a stampede toward owning many.

Our second solution contains 14; digits and comes from new member Monte J, Zerger,
Adams State College, Alamosa, CO. Monte uses the period between the two sentences

to signify the zero in the expansion.

Ten, I maintain, isn’t suitable. Examining real carefully the mathematics, discloses a
superior number, twelve.

Monte also writes:

I found it pleasing that the first three digits in the base twelve representation of Pi are
the first three digits in the base ten representation of 1/Pi.

Pi=(3;18),

1/Pi =(.318),,
End

The DSA does NOT endorse any particalar symbols for the digits ten and eleven.
For uniformity in publications we use the asterisk (*) for ten and the octothorpe (#)
for eleven. Whatever symbols are used, the numbers commonly called “ten”,
“eleven” and “twelve” are pronounced “dck”, “el” and “do” in the duodecimal
system.

When it is nojf clear from the context whether a numeral is a decimal or a dozenal,

we use a period as a unit point for base ten and the semi-colon, or Humphrey poiat,
as a unit point for base twelve.

Thus 1/2 =0.5 =0;6.

V "uidBe £ Go 2"~ - £
i mam v a LU N UYe

Cedric >mith
University College
London, England

[Reprinted from Colson News, Vol. 4, No. 2, pp. 4546, July MCMLXXXIX; with
permissjon.]

We are accustomed to write numbers in the scale of ten, or the decimal or denary scale.
That is, when we write the year as 1989, the last {igure, 9 represents the units, the next
figure on the left, 8, the tens, the next figure on the left, 9, the hundreds (tens times
tens), and so on. This regular progression makes arithmetic easier; thus the addition
table shows that 2 + 3 = 5, whether we are referring to units, tens, hundreds or
thousands. That is, 20 + 30 = 50, 200 + 300 = 500. But that is not true of measure-
ments of time. 20 + 20 + 20 + 20 seconds make 1 minute 20 seconds, 20 + 20 + 20 +
20 minutes make 1 hour 20 minutes, 20 + 20 + 20 + 20 hours make 3 days and 8 hours.
But, while the progression should be regular for convenience, there is no necessary
reason why we should count by tens, hundreds (tens of tens), thousands, and so omn.
We could equally well count by units, dozens, gross (dozens of dozens), dozens of
dozens of dozens, and so on, in which case a number such as 231 would mean

2 gross + 3 dozens + 1 {= 3 hundred + 2 tens + 5)

It seems very clear that this counting by tens originates from counting on the ten
fingers. Some languages count differently, especially those rather isolated from
Western culture. Even in Western nations there are traces of different ways of
counting, especially by twenties, presumably due to counting on both fingers and toes.
Thus, in French, French 80 is “four twenties” (“quatre-vingts” but “octante” in
Belgium). In Danish, one form of 60 is “tresindstyve”, from “ire™ = 3 and “tyve” = 20.
We may ask for a dozen or 2 dozen eggs in a shop, rather than 10 or 20.

However, the world needs a simple system, which shall be easy to operate, and

uniform in all nations, with the result that virtually everybody uses the decimal scale of
numbering (though some languages tend to retain their own symbols for the digits 0, 1,
2, ... side by side with the international ones) and the International System (SI) of
measures. The irregularities are measures of time (day - hour - minute - second), of
angle (coroplete revolution - right angle - degree - minute - second), and the remains of
the traditional systems of measurement used side by side with international ones in
some Anglophone countries (mile - furlong - yard - foot - inch, etc.) But even these
are now legally defined in terms of the international units.

An obvious question is, “Have we done well in having ten as our basis of enumeration?
Could we have done much better with another base?” One could go further, and
suggest that it might be worth while to consider changing to another base, if that would
greatly simplify life. That is not 2 nonsensical suggestion: almost all computers use
the base 2, or the “binary scale”, rather than the customary decimal scale, so as far as
computers are concerned, such a change of base has already been made. Such a change
in cveryday life is hardly thinkable at present, in view of the enormous disruption

(Continued)
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which would be involved in intreducing 2 systems of units completely incompatible
with the present ones. (What the distant future might bring is less predictable.
Circumstances could be different.) Jowever, that does not prevent one looking into
the question of the relative advantages of different scales, and, indeed, there are even
now situations in which the use of a different basc is possible and advantageous. For
example, the rules for winning quite a lot of games depend on the use of the scaie of Z.

The relative advantages of different bases depend very much on the sort of calculations
one wants to do. Suppose that one wants to find the factors of a number. In the usual
denary scale, one knows that a number is divisible by 2 if the last figure s cven, and it
is divisible by 5 if the last digit is 0 or 5. One can go further, and say that if is
divisible by 4 if the number formed by the last 2 figures is exactly divisible by 4, for
example, 1325244 is exactly divisible by 4. To find whether a number is divisible by 3
is more trouble; the rule is that a number is divisible by 3 if the total of the figures is
divisible by 3, and it is divisible by 9 if ihe total is divisible by 9. Thus 1 +3 . 5+
2 + 4+ 4 =21, which is divisible by 3 but not by 9, so 1325244 divides exactly by 3
but not by 9. One can construct rules for divisibility by other numbers, such as by 7,
but most of such rules tend to be rather complicated. If, instead of using the scale of
ten, we used that of twelve, matters would be easier. A number would then be
divisible by 2 when the last figure is divisible by 2, and similarly for 3, 4, and 6.
However, tests for divisibility such as these are more matters for amusement than of
practical use these days. They may well have been useful in the past, when one could
have io add fractions such as 1/2 + 3/5 + 5/6 + 1/4, and so had to reduce them to a
common denominator. But how often does one now have to deal with fractions?
Fractions can be useful in certain technical contexts, such as some algebraic calcula-
tions, but are rarely needed in everyday life, apart from halves and quarter, which can
anyway be written as .5 and .25, etc.

(Consinued)

The Society regrets to announce the death of member number 1*3, James
A Forster, on October 28, 1990.

Mr. Forster had been a member of the DSA for over two dozen years, and
had made use of the base twelve circular slide rule during a Jong teaching

career. |

We extend our deepest sympathies to his family.
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Before looking into the question further, one needs to think what sorts of calculations
need to be done at all often at present. The situation has changed dramatically in the
last 50 years. In 1940 calculating machines would do the four elementary operations
of additjon, subtraction, multiplication and division, but rather sfowly, and they were
expensive. Anything beyond that was bothersome. Tables gave the values of square
roots, logarithms, antilogs, sines, cosines, etc., conveniently to about 4 figures, but any
greater accuracy involved the slow process of looking them up in substantial books of
tables. Nowadays a scientific pocket calculator has a very modest price, and can
perform all these calculations and many more (quite often to an accuracy of something
like a dozen figures), and do them virtually instantaneously. We can classify the
typical sorts of calculations which are now regularly performed somewhat as follows:

(1) Financial calculations (e.g., bank accounts). These involve doing very simple
operations, such as adding, subtracting, classifying, recording, sorting large masses of
data, best done by a targe computer network.

(2) Technical and scientific calculations. These possibly involve doing rather
complicated mathematical operations on a medium sized body of data. Usually, a
moderate sized computer will cope adequately, although there are occasions on which
extremely long calculations are performed, which are only possible when large
versatile computers are available.

(3) Simple technical and mathematical calculations, arising from time to time in an
investigation, which can be adequately performed on a pocket calculator or personal
computer. With the increasingly modest prices and ready availability of calculators
and simple computers, these will rarely be done by hand.

(4) Small, off-the-cuff calculations which can best be done by hand, or which occur
when no calculator is readily available. [n practice, these will almost always amount
to some additions, subtraction and multiplications, as when one buys goods in a shop,
or measures a room for decorating, or wants to know how much a prospective purchase
will cost, or something similar.

(Continued)

PRIME ENDINGS

Mathematicians know that every prime number greater than 3 is of the
form 6k + 1, where k is a2 nataral number. In base twelve this means that
all primes end in either 5,7, # or 1.

Hence we know that

1) Numbers greater than 3 which end in the other eight digits (0, 2, 3,
4,6, 8,9, *) are factorable, and

2} When searching for prime numbers, we need only consider numbers
which end in one of the four digits: 5, 7, # or 1.
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Thus, in practice, the question of what would be a good scale resolves itself into 2
rather distinct questions: what would be a good scale for a computer, and what would
be good for a human calculator?

Computers are not bound by tradition. Some of the first computers worked in the scale
of ten, as we do. But it was soon realized that that was inefficient. It requires quite a
deal of effort for a buman to translate a number from one scale to another, so that
changing the scale in an ordinary calculation is unproductive. But, on the other hand, a
computer can change the scale very quickly, so that it can be designed to operate in any
scale which gives the best performance. In practice, this almost always is taken to be
the scale of 2, or binary scale. A positive binary number is simply a scries of 1's and
0’s. Thus 1 represents 1, 10 represents 2, 100 represents 2 x 2 = 4, 1000 binary =2 x 2
x 2 =8, and so on, giving a sequence of powers of 2. Any other positive number can
be expressed as the sum of powers of 2,3s 5 =4 + 1, written 101, ten = 8 + 2, written
1010,15=8 +4+ 2+ 1,0r 1111, and so on. This is convenient, since there is an
enormous possible choice of “presence” and “absence” alternatives which can be used
to denote 1 and 0. A black mark on a picce of paper can mean “17, and the absence of
such a mark “0”. A magnetic tape can be magnetized in one direction to signify “17,
the opposite dircction “0”.

That means that a binary number can be recorded or transmitted in a number of
different ways. The elements representing “1” and “0” arc called “bits” (short for
“binary digits”). The addition and multiplication tables are extremecly simple:

0+0=0 0+41=1+0=1; 1+1=10.
0x0=0x1=1x0=0; 1x1=1.

But the great snag is that the binary system, in this form, only represents positive
numbers. The usual device to allow it to represent negative numbers is to let the teft
most digit take the values g1 (= -1) and 0, instead of 1 and 0. Thus, if we are dealing
with 5 digit numbers, 00000 = 0, 00001 = 1, 00100 = 4, 00101 = 5 exactly as before,
but q10000 = -16 (=q24), so that 10110 means -16 + 4 + 2 = - 10 (= q10). Any
number between -16 and +15 can then be represented.

A possible rival to the scale of 2 is the scale of 3, or ternary scale. This has scveral
advantages:

{1)There are only 3 digits, 1,0, gl =-1

(2)Any whole number is represented in one and only one way, as 2 =1q1 (=3 -1),7 =
1q11 (=3x3 -3 +1),-2=q2=qll, etc.

(3)To reverse a number, one just reverses each digit = 7 = 1q1%, -7 = q11q1.

(4)The addition and multiplication tables are very simple:
(Continued)

Addition of 0 dces not change a number; also

ql +ql =qll
gl+ 1=:1+ql=0
1+ 1=1ql

Out of the 9 possible additions of pairs of digits, only 2 (q1 + q1 and 1 + 1)
produce a carry.

Multiplication by 0 alJways gives 0, and

qlxql=1x 1=1
qlx 1=1xql=ql

No one of these multiplications produces a carty.
(Continued)

s '"ECT WORLD. ..

we would have had “Snow White and the Twelve Dwarfs”, not seven. Can
you restore the correct numbers in the examples that follow?

1; Twelve Commandments, not
2; Twelve seasons, not

3 The House of the Twelve Gables, not

4 & 5, Friday the Twelfth: Part Twelve, not &
6

7

; The Twelve Hills of Rome, not
H One Thousand seven hundred and twenty eight Arabian Nights,
not
8; The Wonderful Twelve Hoss Shay, not
9, The Twelve Wonders of the Ancient World, not

*, Twelve Seas, not
#; The Twelve, Lost Tribes not
11; Twelve Gentlemen of Verona, not _
12; Twelve Years Before the Mast, not B
13; Twelve Comedies & Twelve Interludes by Cervantes, not

14; The Mighty Twelve Russian composers, not
15; The Civil War Battle of the Twelve Forks, not
16; Twelve Characters in Search of an Author, not
17, The Twelve Sisters by Chekov, not

18; Valley of the Twelve Peaks in Canada, not

19; 1 Led Twelve Lives, not

1%, Twelve Kiver National Forest in CA, not
1#, Goldilocks & the Twelve Bears, not
20, The Twelve Musketeers, not

ANSWERS -- NEXT ISSUE
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However, the use of such a scale of 3 requires a supply of “irits”, i.e. 3 states in which
an object can exist. Thus a magnetic tape could be magnetized in one direction or the
other, or left unmagnetized. An electric current could flow in one direction along-a
wire, or the other, or there could be no current. A dot could be colored green, red, or
left white. But it is rather more difficult to think of suitable trits than to think of
suitable bits, and the idea has so far not found great favor.

But one could, of course, use a pair of bits to represent a trit. 10 could mean 1, 01
could mean g1 = -1, and 11 could mean 0. This would make the representation a little
longer than using the binary scale; to represent a number in this way, with pairs of bits
representing each trit, would require about 26 (=3q4) percent more space. (With the
price of computer memories falling dramatically, this may no longer be so important.)

But it has a compensating advantage, in that there is a fourth combination, 00, which
can be taken to mean “not known”, or “uncertain”. Think of the statement, “the
population of England is 53 million. (Never mind, if that is not strictly correct; this is
an illustration.) We would naturally take this to be stated to the nearest million, i.e.,
that the population lies between 52 500 000 and 53 000 000. The zeros here do not
really mean zero. They are just put in to fill the spaces, and represent figures whose
values we are not worrying about. Similarly, if we say that the population is 50
million, we would again take that to mean to the nearest million, unless the contrary
was stated. If we write that as 50 000 000, the first zero is a real exact zero, buf the
others just represent figures whose value is unknown or ignored.

There is nothing in the ordinary way of writing 50 000 000 to show which 0’s are real
zeros and which are indeterminate or unknown figures. That is, 50 000 000 might just
as well be the value to the nearest hundred thousand, instead of to the nearest million.
There is nothing in the way the number is written to indicate which is meant. Thus
there is a real need for a figure which can mean “unknown”, rather than each figure
expressing a precise value,

The second question is rather different. If we could go back in history, and choose
which base of notation we liked best for calculations, which would we choose? In
discussing this, we will suppose in any case that we are using two-way numbers, since

(Continued)

IT IS A DOZENAL UNIVERSE -- Official!!
Arthur Whillock

Recent studies in nuclear physics have shown that all matter in the
Universe is composed of twelve fundamental particles only, arranged into
three families, with four in each, which are bonded together with twelve
forces. An article describing this significant fact is being prepared for the
DSGB Journal. DSA members should refer to the Scientific American for
December 1989: “The Lost Generation,” p. 15. British readers can more
conveniently see New Scientist for 28th October 1989: “Cosmology
Limits the Number of Neutrinos,” p. 30.

thcy make arithmetic quite noticeably easier than using the traditional one-way
numbers. There is also a personal element in this. Professor A. C. Aitken, FRS, of
Edinburgh, usca to like calculating in the scale of sixty. But that gives addition and
multiplication tables which are much too big for ordinary mortals to learn conve-
niently. Possibly sixteen is about the largest base which one could reasonably
consider. And any small base, say, less than 6, will tend to make even reasonably large
numbers so long that they would strain the memory. Remember that, for example,
1989 or 20q1qi becomes 11111000101 in the binary scale.

There seems littlc question that, for elegance, twelve is easily the best scale. We have
already mentioncd that in that scale we can immediately determine whether a number
is divisible by 2, 3, 4 or 6 by looking only at the last digit. We can have analogs of
“decimal fractions” in the scale of twelve, but we can not call them decimals. They are
usually called “radix fractions”. Thus, ;6 in the scale of twelve would mean six
twelfths, or 1/2, ;4 would mean 4 twelfths, or 1/3, and ;16 = (twelve + 6)/ (twelve x
twelve) = one eighth.

One advantage of the scale of twelve is that so many fractions, like these, which occur
fairly naturally, can be expressed as simple short radix fractions, whereas, in ouf
ordinary decimal scale, 1/2 = .5, 1/4 = .25, 1/5 = .2, but 1/3 and 1/7 and 1/9 and many
other fractions become recurring decimals. Also, in the multiplication table, vartous
combinations such as 2 x 6 = 10, 3 x 4 = 10, give simple answess, whereas the only one
such in decimals is 2 x 5 = 10 (ten). Further comments, showing the elegance of the
dozenal scale, are to be found in Colson News, Vol. 3, issue 2.

However, what we are looking for is not elegance, but practical usefulness. One may
very well hope that the two will go hand in hand, but it does not necessarily follow.
We have seen that in practice by far the greatest number of caleulations not done on a
calculator or computer are additions (or subtractions, which amount to much the same
with two-way numbers). The next most common operation is multiplication. Other
operations, such as finding factors of numbers, or turning fractions into radix fractions,
may be useful on rare occasions, but they form a very small part of everyday life. The
operations of division and square roots are unquestjonably useful in many contexts, but
by far the easiest way of performing them is to use a pocket calculator.

What is wanted, then, is some measure of the difficulty of calculation, by which we
can compare the merits of the different bases. And, because addition and multiplica-

(Continued)

i_ Do you have an idea to share with our members? Why not submit an
article to the Bulletin?
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tion are easily the two most common operations performed ir: practice, we will be
particularly interested in how comparatively difficult they are. Now when we say that
the multiplication 2 x 5 = 10 (base ten) is simple, the feature which would justify that
is that there is only 1 nonzero digit, 1, in the product, whereas in a product like 3x 5 =
15, there are 2 nonzero digits.

One possible measure of difficulty which springs to mind is the average number of
nonzero digits in the entries in the addition and multiplication iables. For example, in
the addition table for the scale of 2 there are 4 entries, with sums 0, 1, 1, 10 (=2),
giving 3 nonzero digits, or an average of 3/4 = (decimally) .75 per entry. In the scale
of 3 there are 9 (=1q1) entries in the table, and 8 nonzero digits giving an average
number 8/9 = .89 (=1.q1g1) nonzero digits per entry. From that point of view, the
binary scale is simpler than the ternary. As regards multiplication, the binary table
gives 1 nonzero digit in 4 entries, or an average of .25, while the ternary scale has 4 out
of 9, or 4/9 = .44. Again, binary does better than ternary. But 2 and 3 are too small to
be practical scales. Suitable candidates for a good base of notation could be 6, 8, 10,
12 and 16. One would expect that 12, being the most elegant, would turn out to be the
simplest scale. The actual values are shown in Table 4.1.1q4.1.

Table 4.1.1g4.1 Average no. of nonzero digits

Base In addition table In multiplication table
06 = 1g4 1.01 0.83 = 1.q23
08 =1q2 1.07 = 1.1q3 1.02

10 1.10 1.18 = 1.2q2

12 1.13 1.20

16 = 2q4 116 =1.2q4 1.40

These results are somewhat unexpected. As regards addition, 10 is a bit simpler than
12 or 16, though not quite as simple as 8. As regards multiplication, where ane would
have expected 12 to score most heavily, it actually comes out as slightly worse than 10.
So from this particular point of view, 10 is not reatly such a bad choice, though 8
would have been better.

However, in this calculation we have neglected another important factor, namely the
length of the numbers to be added. The larger the base, the shorter the number when
written down, and hence the smaller amount of work to be donc in adding or multiply-
ing it. This is more important in multiplication, since in multiplying 2 numbecrs, say, x
and y, the number of multiplications to be done is the product of the number of digits
in x and the number of digits in y. For long numbers, contzining many digits, this
means that in base B the number of operations to be performed in addition is (log 10/
log B) times the number required with basc 10. We will call this the “length factor”.
For multiplication, the length factor is the square of he length factor for addition.
Thus, with base 12, we find that, in this sense, an addition only requirces about 93 per
cent as much work as in base 10, and a multiplication only 86 per cent as much work.
The results are sct out in Table 4.1.1q4.2.

(Continued)

Table 4.1.1g4.2 Length Faciows

Base For addition For multiplication
06 =1q4 1.29 =1.3q1 1.65 = 2.q3q3

08 = 1.2 1.11 123

10 1 1

12 0.93=1.q13 0.86 = 1.q14

16 =2q4 0.83 = 1.q23 0.69 = 1.q3q1

These length factors are more than large enough to offset the difficulty factors in the
previous table. So, on multiplying the two together, it seems that the larger the base
(in our table) the smaller the difficulty, and 12 is, after all, better than 10.

It would seem that the best measure of the difficulty of calculation, if we are to
measure it in terms of the expected number of nonzero digits would be the product of

the factors in the two Tables, 4.1.1q4.1 and 4.1.1q4.2, as Table 4.1.1g4.3.

Table 4.1.1a4.3 Combined measure of difficulty

ase For addition For multiplication
06 = 1q4 1.30 1.37 =1.4qg3
08 =1q2 1.19 =1.2q1 1.25
10 1.10 1.18 =1.2q2
12 1.05 1.04
16 = 2q4 0.96 = 1.0q4 0.96 = 1.0q4

The general conclusion suggested by this table is that the larger the base the easier the
calculation, though there is no very dramatic difference between different bases among
those in this table.

However, this is still not the end of the story. We have already remarked that there is
also a psychological factor, which may vary from person to person. Prof. Aitken
could calculate in the scale of 60. But that means that (even if had he used two-way
numbers) he would have had to learn effectively 1860 (=2q1q40) entries in the addition
table, and 435 entries in the multiplication table. Not many people would have the
ability to do that. The larger the base, the larger the number of entries in the addition
and multiplication tables to be learnt, and recalied when needed. The effort needed to
do this will vary from person to person, so it is not easy to put forward a suitable
measure of the difficulty that presents. In brief, though disappointingly, it doesn’t
seem possible to give a really objective measure of comparison of the difficulties of

calculating in the different bases.
End
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Andrew Hodges
From ALAN TURING: The Enigma (Simon and Schuster).

By 1949, Alan Turing had lost interest in doing certain kinds of basic computer vvork...

“The “fussy little detail” of binary to decimal conversion, for instance, he now found
not worth bothering about. e himself found it simple to work directly in the base-32
arithmetic in which the machine could be regarded as working, and expected other
people to do the same.

“To use base-32 arithmetic it was necessary to find 32 symbals for the 32 different
“digits’. Here he took over the system already used by the engineers, in which they
labelled the five-bit combinations according to the Baudot teleprinter code. Thus the
‘twenty-two’digit, corresponding to the sequence 10110 of binary digits, would be
written as “P’, the letter that the sequence 10110 encoded for an ordinary teleprinter.
To work in this system meant memorising the Baudot code and the multiplication table
as expressed in it -- something he, but few others, found easy.

“The ostensible reason for sticking to this hideously primitive form of coding, which
entailed so much work for the user, was that the cathode ray tube storage made it
possible -- indeed necessary -- to check the contents of the store by ‘peeping’, as Alan
called it, at a monitor tube. He insisted that what one saw as spots on the tube had to
correspond digit by digit to the program that had been written out. To maintain this
principle of correspondence it was actually necessary to write out the base-32 numbers
backwards, with the least significant digit first. This was for technical electronic
engineering reasons, the same as those which obliged cathode ray tubes always to scan
from left to right. Another awkwardness arose on account of the five-bit combinations
which did not correspond to a letter the the alphabet on the Baudot code. . . Geoff
Tootill had already introduced extra symbols for these, the zero of the base-32 notation
being represented by a stroke °/”. The result was that pages of programs were covered
with strokes.”

do they gather dust on a shelf in your attic? Why not pass them along to
your local libracy, or to a school library. Perhaps some nearby math
teacher would appreciate a copy. You can also just leave them in 2

l dentist’s office or other waiting area.

' Do you discard your copies of the Bulletin after you have read them? Or

“Each one teach one.”
-- Ralph Beard, Founder of the DSA

13
A « OPGSA .,

Charles 5. Bagley
Alemogovdo, NM

[Editor’s note: Due to the untimely death of Ralph Beard many
years ago, a note from our former Board Chair, Charles Bagley,
was misplaced. The note included the following proposal. Our
apologies to him for the long publication delay!]

I suggest that the following numbering system is more rhythmic than DEK EL DO.

I use the ampersand (&) for ten and a modified greek rho (p) for eleven, and call ten,
eleven and twelve deci, alif and tan respectively. Counting is as follows:

0 zero 10 tan 100 candred

1 one 11 monotan

2 two 12 duotan 20 twenta 1,000 tan candred or

3 three 13 thirtan 30 thirta one dozend

4 four 14 fortan 40 forta

5 five 15 fiftan 50 fifta 10,000 tan dozend

5 six 16 sixtan 60 sixta

7 seven 17 seventan 70 seventa 100,000 candred dozend
8 eight 18 eightan 80 eighta

9 nine 19 ninetan 90 nineta 1,000,000 zillion

& deci 1& decitan &0 decita

p alif 1p aliftan p0 alifta 1,000,000,000 one dozend zillion

The rule is: in the teens change ‘een’ to “tan’. In the ty’s change ‘y” to ‘a’. Use candred
for a gross (hundred), dozend for a great gross (thousand), and zillion for a dozend®
(million).

The ordinal numbers follow the decimal system in common use. For example:
monotanth, duotanth, twentah, thirtafirst, thirtasecond, decitath, aliftath, candreth,
dozendth, zillionth.

The year 119p (1991) would be one dozend one candred ninetalif.

1044& is one dozend fortadec (with the ¢ pronounced as s). A mile of 3080 (5280) feet
is three dozend eighta feet. The $200,000,000,000 deficit would fall in the candred
zillion class.

What do you think? We would like to hear your reactions to this proposed numbering
system.
End

]

Thenext DT anual Meeting will be
Saturday, October 19, 1991 at 1 P.M.
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153«  (Number One)
Brian Dean
Ohio

There is a text from the desert fathers called “On Prayer: One Hundred and Fifty-Three
Texts’ by St. Evagrios the Solitary.

Now 153 =109, ,and 109; is an interesting number. 1t is a triangular number, i.c.
it is a number such that it is a member of t(n) = 1+243+...4n, and in fact 109 = {(15).

It is also a hexagonal number which means that it is a member of h(n) =
1+549+11+...4n (109 = h(29)).

It is also the sum of 84 (which is a square number), 24 (which is triangular (24 = t(7))
and 21 (which in base * is 25). This means that 25. is a spherical/circular number --
one that is a square number whose square root gets reproduced as the jast digit (in base
*,25=5x 5, also 36 = 6 x 6) although in the dozenal system 21 would not be circuiar/
spherical.

153 (Number Two)

DEK

S. Ferguson
Dozenal Society of Great Britain

While working on patterns involved with the “153” problem (where 13+3%+5% = 153
I happened to note that for 7° in base dek there is a pattern

dck)

7 = 343, and (3+4)* = 343.

Was this an isolated case? or could there be similar examples in base twelve or some
other base?

Dp till now I have the following:
(1+2)* = 123 in base 4
(3+4)* = 343 in base *
(3+1)* =314 in base 9

and (144)* = 144 in base 1#

(Continued)

1S 1958 75

Since the unit digit of the number written in a given base is the same as the power of
the bracketed expression, we are in fact looking at numbers which fit the congruence

%" =1 (mod base).

I suspected (a) that the above four might well be the only solutions with three digits
and (b) that there aren’t any solutions with four or more digits, but further investiga-
tion led me to discover

(9+0+8)* = 9084 in base 19

and (443+15)* = 43154 in base 9

153 (Number Three)

DEK

Gene Zirkel
New York

In response to Shaun Perguson’s contribution “153_, - Number two,” note that

24 = 2455
2°=26,
2t =28

)
ele.
In fact,
2% =2(2™' - n) + 2n is an identity as is
ki = k(k*' - n) + kn

where the base (k! -n) >
the 2 digits k and kn.

This latter yiclds examples such as

3"=33,,3°=36,,, and 4'=44

(183 %)

End




' HISTC ‘FESSOR SPF. S TO DSA MEMBERS
HISTORY PRC FESSC + o/ STO 354 MEMBERS

Gene Zirkel

On Tuesday, 12, May 1194#, on very short notice, history Professor Jens Ultf-Miller
from Copenhagen conducted a bricf but interesting seminar at Nassau Community
College on the history of counting and measuring. iie was returning home to Denmark
from the 26th Annual Congress on Medieval Studics held at Western Michigan
University in Kalamazoo, where he spoke and also organized tvro sessions of a half
dozen speakers. We were indeed fortunate to securc his presence as he spoke about a

variety of topics relating to medicval counting and measurcment.

It was very interesting to learn of the difficultics historians and linguists had in
deciphering such phrases as ‘a year had three hundred and five days’. The problem is
not that our ancestors used shorter years, but rather they used longer ‘hundreds’.

According to Professor Ulff-Miiller, many pcople used a hundred containing dek dozen
units. We refer 1o this today as the long hundred, and differcntiate it [rom the narrow
hundred of only eight dozen and four units. (You may recall that the long ton of 2400 -
rather than 2000 - pounds is still in use today.)

In the middle 2ges, most numbers were written out, and algorithms for operations were
not easy to come by, division being an especially vexing problem. This led people to
desire that the number of partitions in a given unit of mcasurement be highly factorable
and hence - the long hundred of dek dozen units. [t divides evenly by 2, 3, 4, 3,6, &, ¥,
10, 13, 18, 20, 26, 34, 50, and *0.

Plato’s perfect world may have led academicians to prefer the regularity of either dek
times dek or do times do as the number of subdivisions of a measurement, but the
common people did things for convenience and the result was the long hundred.

This preference for convenience over standardization may be the reason we had so
many hybrid combinations of partitions of our units of measurement. (These were to be
found on the back cover of our black and white notebooks in grammar school.) A
preference for convenience may also explain the present resistance to being forced to
adopt the awkward decimal metric system. People everywhere seem to demand halves
and then thirds and/or quarters in their measurements in order to avoid fractions of
units as much as possible.

(Continued)

Why not give some of our literature to a friend? Brochures, Excursions
and Bulletins are available.

His YP = <c9p

We tend to think of things being codified and universal. However many measurements
were regional and things were written differently in different localities. Thus we find
Roman Numerals not quite as standard as we were taught in elementary school. For
example:

IV is not the only four - I1IT was also used. Two hundred appears as II hundred
as well as CC. But sometimes CC stands for two long hundreds! V¥ is found as
denoting 5 times 20 and V1 is used for six thousand.

The reader who is not aware of these variations would have difficulty in attempting to
decipher the meaning of some passages in medieval texts.

To some extent, it appears that the popular culture preferred the long hundred while the
narrow hundred prevailed in sacral use.

Professor Ulff-Miiller is due to return to the States in November. We hope to be able to
announce a date when he will speak to us again, and we trust that you will have the
opportunity to hear him.

Don’t be surprised if you read that

100 fish = 6 score fish,
3 (units) of fish = 100, and
1 (umit) = 40.

Just pity the poor historian who is trying to comprehend a text in which the symbol 100

has two different interpretations in the same document.
End

THE FOLLOWING ARE AVAILABLE

FROM THE SOCIETY

1. Our brochure. (Free)

2. ”An Excursion in Numbers” by F. Emerson Andrews. Reprinted
from the Atlantic Monthly, October 1934. (Free)

3. Manual of the Dozen System by George S. Terry. ($1;00)

4. New Numbers by F. Emerson Andrews. ($10;00)

5. Douze: Notre Dix Futur by Jean Essig. In French. (310;00)

6. Dozenal Slide Rule, designed by Tom Linton. ($3;00)

7. Back issues of the Duodecimal Bulletin, as available, 1944 to
present. ($4;00 each)

8. TGM: A Coherent Dozenal Metrologyby T. Pendlebury  ($1;00)

9. Modular Counting by P.D. Thomas ($1;00)

10. The Modular System by P.D. Thomas ($1;00)
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. .. from members and friends . . .News of Dozens and Dozenalists . . .

JOHN D. ZANSEN, JiX. (30#, Visia, CA) writes: “I find myself more optimistic
about dozenal’s chances of eventual adoption. Until recently I felt we had a beiter
chance of getiing mankind to grow twelve fingers than to adopt base twelve.. But when
I think of all the improbable things that have happened on the world scene in the past
three years, I begin to think that anything is possible.” John also reports that his
robotics professor has read our “Manual of the Dozen System” and is interested in
other material from the Society . . .

Member JAY L. SCHIFFMAN (Jersey City State College, NJ) recently presented a
paper “Congruences and Divisibility Tests” at the 49th Annual Meeting of the
Metropolitan New York Section of the Mathematical Association of America . . .

An announcement about PETER D. THOWMAS’S work in modular counting and
arithmetic appeared in the March-April 1991 issue of the American Metric Journal.
(Peter received the DSA Ralph Beard Memorial Award posthumously in 1990, having
passed away early in that year.). . .

Member PAUL SCHUMACHER (Cherry Hill, NI) recently had an article published
in Topical Time: “The Presidential Election of 1856 . .

Bulletin Editor DR. PATRICIA ZIRKEL (St. John’s University, NY) recently
presented two papers on medieval topics: one at the Twelfth Medieval Forum,
Plymouth State College (USNH), Plymouth, NH; and a second at the 26th international
Congress on Medieval Studies, Western Michigan University, Kalamazoo, MI . . .

Thanks to HENRY C. CHURCHMAN (Council Bluffs, 1A) for his recent gift to the
DSA, which was forwarded to us by his son JOHN P. CHURCHMAN . . .

Thanks also to KAY McKIERNAN for her recent gift to the DSA in memory of her
husband DR. ELLIS R. VON ESCHEN. Kay wrote to express appreciation for the

tribute to Ellis which appeared in the last issue of the Bulletin. She said: “Ellis was

very fond of the group and enjoyed the times he spent with us.” Dr. Von Eschen had
twice presented papers at DSA Annual Meetings . . .

New member MONTE J. ZERGER (Adams State College, Alamosa, CO) writes:

I notice that the symbols for dek and el are apparently from two of the twelve
push buttons on the telephone.

(1) To obtain Directory Assistance for numbers outside their area code, callers

must dial 1 + area code + 555-1212. Curiously, the number 5551212 ends with a
repetition of 12, and is divisible by 12.

(Continued)

N o

(2) How appropriate then that BELL. ends in a repetition of the 12th letter of the
alphabet. /.nd what about HELLO’s successive ©.’s?

(3) Counting from either side of the alphabet to the 12th letter we find L and O.
These letters exactly balance in TELEPHONE as well.

ABCDEFCHIJK L ™M N OPQRSTUVWXYZ
TE L EP HONE

BRUCE V.00, DSA Fellow, writes from Diamond Harbour, NZ:

Thank you for my copy of Bulletin 67; which I enjoyed reading. Iam glad to
know that the Society is going from strength to strength. I noticed too the
paragraph apologising for your rather amusing error in confusing New Zealand
and Australia -- apologies accepted of course.

I have come to the conclusion that you folk down under are really rather droll,
for you go on to say that JAMISON and VERA HANDY visited us this past
summer. Now that really is quite comical because their visit was in the depths
of winter. While her son John went skiing, Jamie, Vera and John’s friend
Corinne drove with me across the South Island from Diamond Harbour (east
coast) to Greymouth (west coast). During the trip across the Southern Alps we
had magnificent views(...)

Dating of Bulletin 67; as “Winter 1991” is also rather quaint since we haven’t
had winter yet this year! ...

Welcome to New Members:

310; JOANNE ALICE YOUNG Crosslanes, WV
311; NADER RAFATY MALAKY University of Tabriz

. Malekan, IRAN
312; ROBERT S. HARRIS Knoxville, TN

Bob writes: “If it’s good cnough for eggs, it’s good enouvgh for me!” (See
“Eggsactly a Dozen,” James Malone; Whole Number 42; (1981), p. #). He is
also interested in sexagesimal counting and would like to hear from other
aficionados. . .
313; MONTE JAMES ZERGER Adams State College
Alamosa, CO

(Continued)
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SCLUF ONTO“ACI ¥ ARFT .»

(Winter 1991 -- p. 1#)
The puzzle:

Replace each letter by a differcnt digit to make this sum correct. Hint: the digit * is
not used.

AAA
BBB
+CCC
DEFG

According to Charles Ashbacher, Hiawatha, 1A, there are 6 equivalent
solutions. The values of A, B and C can be assigned any permutation of the numbers
6, 8 and 9, leading to a sum of 210# in all cases.

End

WHY CHANGE, INDEED?

“At this juncture, there is not one nation on record that uses the SI
exclusively. Some countries nationalize metrics, others use terms and
units outside the system and or old traditional European metric.”
-from the American Metric Journal

volume XIX, page 3, UNIT 3, May/June 1991

(emphasis added)

Whenever someone raises the issue of changing to the metric system (SI),
I ask them, “Which metric system?”.
-GZ

Dozenal Jottings (Concluded)

314; JOHN BARTON Port Perry High School
Port Perry, Ontario

CANADA

315; DALE S. MILNE Boulder, CO

Dale writes that one of the issues that spurred his interest in duodecimals was a
study of (American) Indian languages. “A few had base 4, 5, 8, and many the
mixed 5-20 system.” [We would like to hear more about this! -ED.]
316; GEORGE PETER JELLISS St.Leonard’s on Sea
East Sussex, ENGLAND

George is also interested in six-based systems.
End

0 .- -

A L EZ 3ost I o Uu . .

Py

Charles Ashbacher

(Zach eniyy is a non-negative digit.)

A v

A perfect square and a perfect cube.
2. The three most widely used bases are divided by two.
3. Palindromic in two common bases.

1.
A permutation of the digits form an arithmetic sequence.

The dozenal sum of these digits occurs as part of another solution in this puzzle.
Easily seen to be divisible by 3 in base ten and base twelve.

W R =

SOLLUTION IN NEX'VISSUE!

“In numerology, the number 12 has always represented compleieness, as
in the 12 monihs of the year, the 12 signs of the zodiac, the 12 hours of
the day, the 12 gods of Olympus, the 12 labors of Hercules, the 12 tribes
of israel, the 12 Apostles of Jesus, the 12 days of Christmas and so on.

I Since 13 exceeds 12 by only one, the number lies just beyond complete-
ness and, henee, is restless to the point of being evil.”

from the Smithsonian, 2/87
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Charles W. Trigg

An integer is palindromic if jt is the same when read forward or backward. That is, a
palindrome is identical with its reverse. Every palindrome with an even number of
digits is divisible by 11. Thus 11 is the only prime palindrome with an even number of
digits.

Of the 110 three-digit palindromes, 18 are prime. They are:

111 18% 565 727 797
131 1#1 575 737 #1#
141 535 585 747 #2#
171 545 S5#5 767 HOH

Included above are four pairs and two trios of consccutive palindromes. Note that 565
and 575 are consecutive primes, while 727, 737, 747 and 767 are alternate primes.

End

‘A TRT AN WS

from a recent issue of the American Metric Journatl
(Volume XVIII, Jan/Feb 1990)

‘No case has been madc for metric’ 1990

Britain Still Dragging Its Feet Over Metric System
(Feet? - Ed.)

Conversion would hurt the U.S. cconomy (from the Government Account-
ing Office Report to the Congress)

There is no need to convert to the metric system (from the GAO Report)

European countries do NOT all use the same metric. They even mix in the
inch/pound system and always have.
(Emphasis added - Bd.)
COSTS IN THE BILLIONS
Conversion would be enormously expensive

Ty ALMY T T DS

EDTOR
JOSEPH S MADACHY

EDITORIAL BOARD:

Steven Kahan
David A. Klarner
Harry L. Nelson

Benjamin L. Schwartz
Frank Rubin

AIMS AND SCOPE:
Editor, Joseph Madachy invites you to take a look at the lighter side

of mathematics.

The Journal of Recreational Mathematics is thought-provoking and
stimulating—packed with geometrical phenomena, alphametics,
solitaires and games, chess and checker brainteasers, problems and
conjectures, and solutions.

The Journal of Recreational Mathematics offers everyone interested
in math a never-ending parade of the exciting side of numbers.

* Complimentary sample issue available.

SUBSCRIPTION INFORMATION:

Price per volume - 4 issues yearly

Rates: $70.00 Institutional, $18.95 Individual

Postage & handling: $4.50 US & Canada, $9.35 elsewhere
ISSN: 0022-412X

RMOE

Bayweo ..~ ing Company, Inc.
26 Austin Avenue, P.O. Box 337, Amityville, NY 11701
PHONE (516) 691-1270 FAX (516) 691-1770
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DETACH HERE -- OR PHOTDCOPY
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e oxtend an Invilation fo membaorship in our sociaiy.
duse are onfyy 512 (US) par celendar year, e only requirement iz & constructive intorest.
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. nal Soci Y

Name
LAST FIAST NIDOLE

Mailing Addrasa (for DSA liams)

(See below for aliernale address)

Telephone: Home Business
Date & Place of Birth
College Degreos
Businesa or Profession
ANNUBI DUGB <1t vveviiinerenrennnnsensiones $12.00 (US)
Student (Enter data below) ..... Cveresseinenn- $3.00 (US)
Life oo e $144.00 (US)
School
Address
Year & Math Class
tnatructor Dept.

Other Socisty Memberships

Alternate Address (indicate whether home, oftice, school, other)

Signed Date

My interast In duodecimale arose from

Use space below to indicate spacial duodacimal intarests, commaents, and other
suggestions, or attach a separate sheet:

Wiall to: Dozenal Society of America
¢/0 Math Department
Nassau Community College
Garden City, Li, NY 11530
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