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The Problem

The overwhelming majority of the population presumes all numbers are ex-
pressed in base ten, often with no awareness that there is even an alternative.

To them, “100” means simply “a hundred”—ten times ten—and that’s that.
Many advocates of base twelve fondly envision a world where dozenal is the

presumed base. In such a world, ordinary folk would naturally read “100” as “a gross.”
Of course, the reality is that supplanting decimal as the “civilizational” base has

proven a stubbornly distant goal. This circumstance has persisted since the founding
of the Dozenal Society of America nearly six dozen years ago—half a biquennium!1
No doubt this state of affairs will continue for the foreseeable future.

Consequently, the more sober advocates of dozenalism have long been reconciled
to the need to be “bilingual” (perhaps a better term would be “binumeral”) in our
mathematical discourse. We recognize the need to be able to switch back and forth, as
needed, between base ten and base twelve—and even other bases—preferably, in as
neutral and equitable a manner as possible, favoring no base over any other. This is
particularly important when introducing the subject to newcomers, a perennial task.
(“Each One, Teach One” has been a motto of the DSA since its inception.2)

Of course, admitting more than one base into the discussion renders any number
longer than one digit ambiguous—unless care is taken to stipulate the base in use at
any given moment. Various schemes to achieve this have been devised over the years.

An Early Expedient: Stylistic Marking
Largely at the behest of F. Emerson Andrews, co-founder of the DSA and author of the
book New Numbers,3 this publication in its earliest days established a convention of
distinguishing dozenal numbers from decimal, by typesetting the former in italic style.
A number typeset in normal style would simply default to a decimal interpretation.

100 = 144
16 .9 = 18.75

This convention persisted for over three unquennia.1
An advantage of this approach is that it is fairly non-intrusive, at least as far

as conventions for mathematical notation are concerned. This means that readers
1See page 31z.
2Ralph H. Beard, “Propagation”, Duodecimal Bulletin, Vol. 1, No. 2, WN 1, Jun 1161z (1945d).
3F. Emerson Andrews, New Numbers: How Acceptance of a Duodecimal Base Would Simplifiy

Mathematics, 1944d (1160z).
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can take all their prior experience with how numbers work in decimal, and all their
expectations about the “look and feel” of numbers, and simply transfer that to dozenal
numbers, with minimal adjustment. Except for new symbols for digits ten and eleven,
there is no other notation to learn. All other mathematical symbols and operators
that people have been comfortable with for generations will largely look the same, and
continue to behave in the same way.

However, a disadvantage is that this makes for a rather subtle distinction. Seeing
italicized or non-italicized numerals in isolation affords the reader with no positive
prompting about which base is being applied. If the italicization is not particularly
strong, the intent may not be clear.

A stronger objection to this scheme is the fact that it interferes with other common
usages of italic style. For instance, italics are generally used to show emphasis, or to
set off foreign or quoted text. If there were ever an occasion to emphasize a decimal
number, or to not emphasize a dozenal number, there would be no way to do that.

An even stronger objection is that this scheme is neither neutral nor equitable.
It requires dozenal numbers to be marked in a particular—and peculiar—way, while
requiring no marking or change at all for decimal numbers. This implies a favored
status for decimal and relegates dozenal to an “also-ran” position.

This is problematic enough in typeset print. But consider what this requires of
people writing by hand. Either they must go out of their way to artificially distinguish
the degree of slant in their cursive, or they must represent italics via underscoring,
which means branding every dozenal numeral as somehow out-of-place—a sore thumb,
as it were. In an era before word-processing, when the typical mechanical typewriter
provided one and only one font, this meant laboriously backspacing over a dozenal
numeral and superimposing it with underscores. It is not surprising that aficionados
of base twelve would seek out a more streamlined scheme for base annotation.

Humphrey’s Radical Radix-Point
Very early in its history, one of the pioneers of the DSA, Herbert K. Humphrey, hit
upon an idea: If a period is known as a “decimal” point, separating whole digits from
fractional digits in decimal, then perhaps dozenal numbers need a radix point of their
own too—a “dozenal” point, as it were. He began using a semicolon to that end:

16;9 = 18.75

The obvious advantage of this is that it allows us to mark a number as dozenal with
no need for any change of font or style, nor any laborious backtracking and retyping.
All it takes is the use of another key already available on the typewriter.

(Interestingly, this was not an entirely new idea. More than an unquennium prior
the DSA’s founding, Grover Cleveland Perry made a similar proposal, in his pamphlet
“Mathamerica.”4 He suggested the colon, rather than the semicolon, for this purpose.)

Humphrey proposed this use of the semicolon in an early letter to the Bulletin,5

4Grover Cleveland Perry, “Mathamerica, or The American Dozen System of Mathematics”,
1149z (1929d). Reprinted in Bulletin, Vol. 6, No. 3, WN 14z (16d), Dec 1166z (1950d).

5Herbert K. Humphrey, letter in “Mail Bag”, Duodecimal Bulletin, Vol. 1, No. 3, WN 2,
Oct 1161z (1945d).
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4Grover Cleveland Perry, “Mathamerica, or The American Dozen System of Mathematics”,
1149z (1929d). Reprinted in Bulletin, Vol. 6, No. 3, WN 14z (16d), Dec 1166z (1950d).

5Herbert K. Humphrey, letter in “Mail Bag”, Duodecimal Bulletin, Vol. 1, No. 3, WN 2,
Oct 1161z (1945d).
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and others were slowly influenced to adopt this practice. However, it was not until more
than an unquennium later that it really took off, under the intensive and enthusiastic
lobbying of Henry Clarence Churchman.6 Churchman at that time had become editor
of the Bulletin (and a prolific contributor), and even, for a time, DSA president.

The so-called “Humphrey point” did not, at first, supplant italics, despite its
clear potential to do just that. This was not simply a case of inertia or incipient
traditionalism.

Under the prevailing syntax rules for numbers, a “decimal” point can only appear
as part of a number, if it is actually followed by fractional digits—i.e., “decimals”
(meaning, “minuscule quantities in base ten”). In a pure integer, of course, no “decimal”
point appears.

This rule ensures that a period only admits to an interpretation as a radix point,
if it is embedded between digits (or at least, followed by one or more digits), without
intervening whitespace. In any other context, it is interpreted as a terminator of a
sentence. Another way of saying this is that a period is only interpreted as a radix
point if it appears in “medial” position or “initial” position (in the middle or at the
start of a numeral); in “terminal” position (at the end of a word or number), it is
always interpreted as prose punctuation.

In conventional prose, a semicolon can only appear in terminal position, where it is
only interpreted as punctuation (a separator between clauses in a sentence). However,
it’s certainly reasonable to consider using it in medial or initial position for some
purpose, such as an alternate radix point, or for Internet jargon such as “tl;dr”.

At first dozenalists limited themselves to using the semicolon as a “duodecimal”
point in medial and initial positions only, where it would actually be followed by
“duodecimals” (“miniscule quantities in base twelve”). They initially refrained from
using it in terminal position, in deference to its role as prose punctuation.

So the italics were still needed to mark dozenal integers. In fact, for quite a few
years, italics continued to be used for all dozenals, even while the non-integer dozenals
began sporting Humphrey points:

100 = 144
16 ;9 = 18.75

However, in later issues Churchman and his followers became even more creative:

100 ;0 = 144
16 ;9 = 18.75

In other words, they got into the habit of taking what otherwise would have been
a pure integer, and appending a spurious 0 fractional digit, simply for the sake of
embedding a “dozenal” marker—logic they never thought to apply to decimal integers.

In fact, it appears that Humphrey himself had always been sanguine about using
a terminal semicolon to mark an integer as dozenal, without following it with any
fractional digits at all. It took many years for other dozenalists to wear down their

6Henry Clarence Churchman, “A Dozenal Point Worth Making”, Duodecimal Bulletin, Vol. 11z
(13d), No. 1, WN 22z (26d), May 1171z (1957d).
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inhibitions and accept this practice, but eventually it caught on. This was enough to
abolish the former italic scheme:

100; = 144
16;9 = 18.75

For an outsider looking in, this is a rather curious practice, with clear drawbacks.
First, it falls short on the goal of being neutral and equitable. It requires a radical
change to the syntax of numbers, but only for dozenal numbers, so they can be marked
as such. Meanwhile, it imposes no change at all to the syntax of decimal numbers,
leaving them essentially unmarked. This confers a privileged default status to decimal
base, and relegates dozenal to secondary status, as surely as italicization did.

In an attempt to reclaim some neutrality, in the last few years we even see the
period being appended onto decimal integers, so that it acts as a “decimal” base
marker, even in terminal position:

100; = 144.
16;9 = 18.75

But this merely compounds the problem. Now the scheme is quite intrusive, interfering
with the normal interpretation of key punctuation marks fundamental to commonly
accepted prose style. For we can easily imagine a sentence such a this:

A gross, in decimal, is 144; whereas in dozenal, it’s 100.

Here, the semicolon ends a clause while following a decimal integer, and the period
ends the sentence while following a dozenal integer. Yet, under the regime of “dozenal”
and “decimal” points, that sentence would be impossible. Instead we’d need to write:

A gross, in decimal, is 144.; whereas in dozenal, it’s 100;.

If we simply wish to reverse the sentence, the result is even more unfortunate:

A gross, in dozenal, is 100;; whereas in decimal, it’s 144..

The circumstances where such statements would occur are quite ordinary. As awkward
as these forms are, the circumlocutions necessary to avoid them are just as awkward.

Modularity in Design ... and Its Lack
What this comes down to is that the Humphrey point is a classic example of a design
which achieves very poor modularity. Modularity is the principle of good design that
stipulates that, ideally, there should be a one-to-one correspondence between the
functions that a system implements, and the specific features that implement them.

Features should implement their functions as independently of each other as possible.
Proliferating new features that duplicate functions already implemented elsewhere—
“reinventing the wheel”—should be avoided. Piggybacking multiple functions into a
single feature can be tempting to naive designers, because it feels like “killing two birds
with one stone.” But when a single feature is overloaded trying to satisfy too many
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functions, it makes it difficult to adjust how one function is being handled, without
interfering with other functions.

The Humphrey point is just such an example of a naive design. It attempts to
implement more than one function at once: It tries to act both as a base-indicator,
marking a number as dozenal, and at the same time as a fraction-point, marking
the boundary between whole digits and fractional digits. As a fraction point, it
unnecessarily duplicates the function already being adequately served by the medial-
period. It interferes with the normal role of the terminal-semicolon, usurping its
established function as a clause-separator, in order to overload it with a new function
as a base-indicator. This leads logically and inevitably to interfering with the normal
role of the terminal-period, co-opting its established function as a sentence-terminator,
in order to make it into a decimal base-indicator to contrast with the Humphrey point.

The fact of the matter is that when Simon Stevin coined this usage of a medial-
period, inventing the so-called “decimal point,” the role he intended for that was
simply to act as an indicator that subsequent digits are “miniscules,” fractional powers
of the base. It acquired the name “decimal point,” simply because it was primarily
applied to base ten, and in base ten, the miniscules are known as “decimals” (meaning,
“divisions of ten”).

By a different etymological route, the word “decimal” has also become a term
for base ten itself, in contrast with other bases. But it was never Stevin’s intention
that the medial-period be limited to base ten. He meant for it to be a fraction-point,
applicable to any base. Indeed, he is actually reputed to have considered applying it
to dozenal. He most certainly never intended it as a base-indicator. It only acquired
that connotation because of the unfortunate overloading of the term “decimal.”

Mainstream mathematicians have studied many non-decimal bases, for biquennia
now (at least as far back as Gottfried Leibniz’s studies of binary base back in the
Dozenth Biquennium). They have done so, and continue to do so, with apparently no
idea that any particular base requires its own special punctuation to mark its fractional
digits. Such a requirement is simply not scalable to all the bases we might like to
employ. How many different punctuation marks can we co-opt?

Nearly four unquennia ago, Churchman himself discovered, much to his chagrin, just
how untenable this program of punctuation-reassignment could become. In response
to the burgeoning interest in hexadecimal base due to the rise of computing machinery,
he wrote an article in the Bulletin entitled “Welcome, Hexadecimalists!”7 In it, he
proposed using the exclamation mark as the “hexadecimal identification point” (or
“HIP” for short). This would then let us say:

90! = 100; = 144
12!C = 16;9 = 18.75

The very next issue saw letters to the editor, from correspondents in both England
and the U.S., objecting to how this proposal would usurp the role of the exclamation
mark as the symbol for the factorial operator!8 The HIP was never heard from again.

7Henry Clarence Churchman, “Welcome, Hexadecimalists!” Duodecimal Bulletin, Vol. 1Ez
(23d), No. 1, WN 36z (42d), Sep 1180z (1968d).

8Letters from Shaun Ferguson, Stan Bumpus, Duodecimal Bulletin, Vol. 1Ez (23d), No. 2,
WN 37z (43d), Dec 1180z (1968d).

14z Page One Dozen Four The Duodecimal Bulletin

Apparently, this misadventure had been inspired the year before by Tom Pendlebury,
a member of the Dozenal Society of Great Britain, and the creator of the Tim-Grafut-
Maz measurement system.9 In a short editorial note, Churchman enthusiastically
relates Pendlebury’s suggestion to call the Humphrey point the “Dozenal Identification
Tag,” or “DIT” for short.X Bestowing such a convenient handle upon it, with a concise
pronunciation counterpointing the “dot” for the period, seems to have helped cement
the Humphrey point’s dubious appeal.

If the “DIT” had truly been nothing more than a “tag” indicating a base, there
would be nothing to object to. But its role as a fraction point, overloaded onto its
established role as punctuation, make it problematic.

Honourable (?) Mentions
Meanwhile, as the “DIT” was insinuating itself into the consciousness of most dozenal-
ists, some members of the DSGB (including Pendlebury) had gotten into the habit of
marking some dozenal numbers with an asterisk prefix. On face value, this potentially
could have been a somewhat more modular solution than the Humphrey point, if it
had been applied both to integers and to fractionals:

∗100 = 144
∗16.9 = 18.75

This would neatly avoid any interference with the normal syntax of integers as well as
the normal radix point of fractionals.

On the other hand, it does risk clashing with the use of the asterisk as a multi-
plication operator, and it rather gets in the way of prefixing a minus sign to make a
negative number. But the chief disadvantage of this is that it would have been no
more equitable or neutral than the Humphrey point. Once again, dozenal would be
given the sole burden of carrying the special marking, while decimal would retain the
privileged position of being able to remain unmarked.

However, what asterisk proponents actually suggested was the following:

∗100 = 144
16;9 = 18.75

In other words, they made use of two completely different base-indicators for dozenal:
the asterisk prefix for dozenal integers, and the Humphrey point for dozenal fractionals.
This makes for worse modularity, because this proliferates multiple features implement-
ing the same function of marking dozenal numbers—while still providing no feature to
mark decimal numbers.

For a counterpoint to the preceding, let us go back more than a century (eight
unquennia) prior to this. Sir Isaac Pitman, the Englishman who invented shorthand,
was promoting both spelling reform (a phonetic alphabet for English) and “reckoning

9T. Pendlebury/D. Goodman, TGM: A Coherent Dozenal Metrology, 11E8z (2012d)
XHenry Clarence Churchman, editorial note relating “DIT” suggestion from Tom Pendlebury,

bottom of p. 4, Duodecimal Bulletin, Vol. 1Xz (22d), No. 0, WN 35z (41d), Sep 117Ez (1967d).
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he wrote an article in the Bulletin entitled “Welcome, Hexadecimalists!”7 In it, he
proposed using the exclamation mark as the “hexadecimal identification point” (or
“HIP” for short). This would then let us say:

90! = 100; = 144
12!C = 16;9 = 18.75

The very next issue saw letters to the editor, from correspondents in both England
and the U.S., objecting to how this proposal would usurp the role of the exclamation
mark as the symbol for the factorial operator!8 The HIP was never heard from again.

7Henry Clarence Churchman, “Welcome, Hexadecimalists!” Duodecimal Bulletin, Vol. 1Ez
(23d), No. 1, WN 36z (42d), Sep 1180z (1968d).

8Letters from Shaun Ferguson, Stan Bumpus, Duodecimal Bulletin, Vol. 1Ez (23d), No. 2,
WN 37z (43d), Dec 1180z (1968d).
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Apparently, this misadventure had been inspired the year before by Tom Pendlebury,
a member of the Dozenal Society of Great Britain, and the creator of the Tim-Grafut-
Maz measurement system.9 In a short editorial note, Churchman enthusiastically
relates Pendlebury’s suggestion to call the Humphrey point the “Dozenal Identification
Tag,” or “DIT” for short.X Bestowing such a convenient handle upon it, with a concise
pronunciation counterpointing the “dot” for the period, seems to have helped cement
the Humphrey point’s dubious appeal.

If the “DIT” had truly been nothing more than a “tag” indicating a base, there
would be nothing to object to. But its role as a fraction point, overloaded onto its
established role as punctuation, make it problematic.

Honourable (?) Mentions
Meanwhile, as the “DIT” was insinuating itself into the consciousness of most dozenal-
ists, some members of the DSGB (including Pendlebury) had gotten into the habit of
marking some dozenal numbers with an asterisk prefix. On face value, this potentially
could have been a somewhat more modular solution than the Humphrey point, if it
had been applied both to integers and to fractionals:

∗100 = 144
∗16.9 = 18.75

This would neatly avoid any interference with the normal syntax of integers as well as
the normal radix point of fractionals.

On the other hand, it does risk clashing with the use of the asterisk as a multi-
plication operator, and it rather gets in the way of prefixing a minus sign to make a
negative number. But the chief disadvantage of this is that it would have been no
more equitable or neutral than the Humphrey point. Once again, dozenal would be
given the sole burden of carrying the special marking, while decimal would retain the
privileged position of being able to remain unmarked.

However, what asterisk proponents actually suggested was the following:

∗100 = 144
16;9 = 18.75

In other words, they made use of two completely different base-indicators for dozenal:
the asterisk prefix for dozenal integers, and the Humphrey point for dozenal fractionals.
This makes for worse modularity, because this proliferates multiple features implement-
ing the same function of marking dozenal numbers—while still providing no feature to
mark decimal numbers.

For a counterpoint to the preceding, let us go back more than a century (eight
unquennia) prior to this. Sir Isaac Pitman, the Englishman who invented shorthand,
was promoting both spelling reform (a phonetic alphabet for English) and “reckoning

9T. Pendlebury/D. Goodman, TGM: A Coherent Dozenal Metrology, 11E8z (2012d)
XHenry Clarence Churchman, editorial note relating “DIT” suggestion from Tom Pendlebury,

bottom of p. 4, Duodecimal Bulletin, Vol. 1Xz (22d), No. 0, WN 35z (41d), Sep 117Ez (1967d).
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reform” (adoption of base twelve).E He advocated a system of base annotation where
decimal numbers would be marked, but dozenal numbers would be left unmarked:

100 = (◦144)◦
16.9 = (◦18.75)◦

The express purpose of these awkward-looking parentheses was to mark “obsolescent”
numbers. Pitman’s clear intent was to declare dozenal the superior base, and to
stipulate that decimal was henceforth deemed obsolete. While this approach was
certainly modular, it was also clearly inequitable—although in this instance, on the
opposite extreme from the cases we have considered so far. It appears this approach
did not persuade many of Pitman’s Victorian-era countrymen to abandon decimal.

Bottom line, we shall see how all of these infelicities could have been avoided in the
first place—once we examine how folks in the mainstream annotate their bases today.

The Mainstream Solution
Mainstream mathematicians and textbooks on mathematics actually have a fairly
straightforward approach for annotating the base of a number, an approach that has
been in existence for unquennia (perhaps biquennia): They simply suffix the number
with a subscript expressing the base. Usually this is itself a numeral:

9016 = 10012 = 14410 = 2208 = 4006 = 1001,00002

12.C16 = 16.912 = 18.7510 = 22.68 = 30.436 = 1,0010.112

One advantage of this scheme is that it is comprehensive: This syntax lets us
express a number in any base we please. This assumes, of course, that we have sufficient
digit characters to support that base. In fact, the convention is to use the letters of the
standard Latin 1 alphabet (the English letters A through Z) as transdecimal digits ten
through two dozen eleven, thereby supporting up to base three dozen. This convention
is promoted both by the educational community and, to varying degrees, by several
modern computer programming languages. The letters A through F are well-known as
the transdecimal digits for hexadecimal.

Another advantage of this scheme is that it is highly modular. It augments the
syntax of numbers with an additional feature, which serves only to identify the base
of the number. It does this, while neither participating in, nor interfering with, any
function of any other feature. Whether the number is an integer, or has a radix point
and a fractional part; whether it is a positive number, or a negative one; whether it is
expressed in scientific notation, or otherwise; and so forth—none of these have any
bearing upon, nor are they perturbed by, this additional subscript annotation. A long
and complex expression can be couched in parentheses, and such a subscript can be
applied to the whole. Readers can take all their prior experience with how decimal
numbers work, and transfer that to numbers in any other base. There is no need to
reinterpret existing punctuation, nor to learn any new operators or symbols, other

ESir Isaac Pitman, “A New and Improved System of Numeration”, The Phonetics Journal,
London, 9 Feb. 10X8z (1856d), http://www.dozenal.org/drupal/sites/default/files/DSA_pitman_
collected.pdf.
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than any additional digits the new base requires; all other mathematical symbols and
operators that people are familiar with continue to behave the same way.

In terms of how based number values are formatted, this scheme is entirely equitable.
All bases are treated the same; none is favored over any other. If we decide, within
a given context, to designate one particular base as the assumed default, then we
can simply make a blanket statement about that, and then omit the subscripts from
numbers of that base, without changing any other aspect of their syntax. We can
do this equivalently, no matter which base we choose to favor. Once the annotation
feature has been removed from those selected numbers, no lingering trace remains that
it was ever there.

The main disadvantage of this convention is that it begs the question: What base
is the annotation itself expressed in? The conventional answer, of course, is simply to
assume decimal. But this grants decimal favored status, at least within the subscripts.
If dozenal were ever to become the preferred base, would these subscripts be recast?

9014 = 10010 = 144X
12.C14 = 16.910 = 18.75X

Ultimately, this does not eliminate the ambiguity, it merely pushes it into the subscripts.
We need some way to express the annotations themselves that is neutral to any base.

One way to mitigate this is to spell out the subscripts as words:

90sixteen = 100twelve = 144ten = 220eight = 400six = 1001,0000two

12.Csixteen = 16.9twelve = 18.75ten = 22.6eight = 30.43six = 1,0010.11two

School textbooks teaching alternate bases will often use this style. (Indeed, even
as Churchman was promoting the semicolon, Shaun Ferguson of the DSGB ably
demonstrated this spelled-out technique in correspondence to the Bulletin.10,11)

An obvious disadvantage of using spelled-out base names, is that they make rather
unwieldy subscripts. They are fine enough for isolated demonstrations of fundamental
principles in a textbook setting. As tools for everyday handling of numbers, where
switching between competing bases may become a frequent occurrence, such long
words become tedious to write, as well as read.

Interestingly, in a letter to the Bulletin, published in its very second issue,12
William S. Crosby, then a U.S. Army private in World War II, suggested the following:

100unc = 144dec

16.9unc = 18.75dec

where “dec” is short for “decimal,” and “unc” is short for “uncial” (Crosby’s preferred
term for base twelve). Here we have the germ of an idea: To annotate a based number,
use an abbreviation for the name of its base. How far might we abbreviate these
annotations? We will revisit this question shortly.

10Shaun Ferguson, “Number Base Oddments,” Duodecimal Bulletin, Vol. 1Ez (23d), No. 2,
WN 37z (43d), Dec 1180z (1968d).

11Shaun Ferguson, letter, Bulletin, Vol. 20z (24d), No. 0, WN 38z (44d), Apr 1181z (1969d).
12William S. Crosby, “Uncial Jottings of a Harried Infantryman,” Duodecimal Bulletin, Vol. 1,

No. 2, WN 1, Jun 1161z (1945d). Entire letter reprinted in full on page 29z.
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through two dozen eleven, thereby supporting up to base three dozen. This convention
is promoted both by the educational community and, to varying degrees, by several
modern computer programming languages. The letters A through F are well-known as
the transdecimal digits for hexadecimal.

Another advantage of this scheme is that it is highly modular. It augments the
syntax of numbers with an additional feature, which serves only to identify the base
of the number. It does this, while neither participating in, nor interfering with, any
function of any other feature. Whether the number is an integer, or has a radix point
and a fractional part; whether it is a positive number, or a negative one; whether it is
expressed in scientific notation, or otherwise; and so forth—none of these have any
bearing upon, nor are they perturbed by, this additional subscript annotation. A long
and complex expression can be couched in parentheses, and such a subscript can be
applied to the whole. Readers can take all their prior experience with how decimal
numbers work, and transfer that to numbers in any other base. There is no need to
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than any additional digits the new base requires; all other mathematical symbols and
operators that people are familiar with continue to behave the same way.

In terms of how based number values are formatted, this scheme is entirely equitable.
All bases are treated the same; none is favored over any other. If we decide, within
a given context, to designate one particular base as the assumed default, then we
can simply make a blanket statement about that, and then omit the subscripts from
numbers of that base, without changing any other aspect of their syntax. We can
do this equivalently, no matter which base we choose to favor. Once the annotation
feature has been removed from those selected numbers, no lingering trace remains that
it was ever there.

The main disadvantage of this convention is that it begs the question: What base
is the annotation itself expressed in? The conventional answer, of course, is simply to
assume decimal. But this grants decimal favored status, at least within the subscripts.
If dozenal were ever to become the preferred base, would these subscripts be recast?

9014 = 10010 = 144X
12.C14 = 16.910 = 18.75X

Ultimately, this does not eliminate the ambiguity, it merely pushes it into the subscripts.
We need some way to express the annotations themselves that is neutral to any base.

One way to mitigate this is to spell out the subscripts as words:

90sixteen = 100twelve = 144ten = 220eight = 400six = 1001,0000two

12.Csixteen = 16.9twelve = 18.75ten = 22.6eight = 30.43six = 1,0010.11two

School textbooks teaching alternate bases will often use this style. (Indeed, even
as Churchman was promoting the semicolon, Shaun Ferguson of the DSGB ably
demonstrated this spelled-out technique in correspondence to the Bulletin.10,11)

An obvious disadvantage of using spelled-out base names, is that they make rather
unwieldy subscripts. They are fine enough for isolated demonstrations of fundamental
principles in a textbook setting. As tools for everyday handling of numbers, where
switching between competing bases may become a frequent occurrence, such long
words become tedious to write, as well as read.

Interestingly, in a letter to the Bulletin, published in its very second issue,12
William S. Crosby, then a U.S. Army private in World War II, suggested the following:

100unc = 144dec

16.9unc = 18.75dec

where “dec” is short for “decimal,” and “unc” is short for “uncial” (Crosby’s preferred
term for base twelve). Here we have the germ of an idea: To annotate a based number,
use an abbreviation for the name of its base. How far might we abbreviate these
annotations? We will revisit this question shortly.

10Shaun Ferguson, “Number Base Oddments,” Duodecimal Bulletin, Vol. 1Ez (23d), No. 2,
WN 37z (43d), Dec 1180z (1968d).

11Shaun Ferguson, letter, Bulletin, Vol. 20z (24d), No. 0, WN 38z (44d), Apr 1181z (1969d).
12William S. Crosby, “Uncial Jottings of a Harried Infantryman,” Duodecimal Bulletin, Vol. 1,

No. 2, WN 1, Jun 1161z (1945d). Entire letter reprinted in full on page 29z.
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Approaches from Programming Languages
Even as the Humphrey point was rising to prominence within the dozenalist societies,
the rise of computing machines led to a different sort of prominence for the semicolon:
In numerous programming languages, the semicolon became the marker for the end of
an “executable statement” of code. This makes it perhaps the premiere character of
punctuation in most software.

If we deemed the Humphrey point to be an indispensible feature of dozenal
numbers, we would run the risk of branding them incompatible with the design of most
programming languages. Yet this is demonstrably unnecessary. While the dozenalist
societies have been focused for generations on the rather narrow problem of how to
distinguish numbers of just two bases, decimal versus dozenal, programming languages
tend to support several bases besides decimal. Usually there is at least support for
octal and hexadecimal, and often binary as well, and in some cases, many other bases,
including dozenal.

For example the Ada programming language has built-in support for all bases
between binary and hexadecimal:

16#90# = 12#100# = 10#144# = 8#220# = 6#400# = 2#1001_0000#
16#12.C# = 12#16.9# = 10#18.75# = 8#22.6# = 6#30.43# = 2#1_0010.11#

In this syntax, a based number (integer or real) is flanked by number-sign characters
and prefixed with the base. The base itself must be expressed as a decimal number
between 2 and 16, so Ada’s syntax exhibits the same decimal bias as the mainstream
subscript solution. It also is rather verbose and heavy-weight.

Other programming languages favor a more terse, streamlined style of annotation.
For instance, languages such as C, C++, and Java, allow the following:

0x90 = 144 = 0220 = 0b10010000

In other words, a numeric literal always starts with a digit, but if the initial digit is 0,
it is a signal that the base is non-decimal. If the zero is followed only by digits, then
the literal is interpreted as octal base. If, however, the initial zero is followed by an
“x”, then the literal is hexadecimal. If it is followed by a “b”, then the literal is binary.

Thus, these C-style languages have managed to reduce base annotations down to
one or two alphanumeric characters, without resorting to any radical redefinition of
punctuation. The downside is they provide only a limited repertoire of alternate bases,
and once again, they single out decimal for special status as the unmarked base.

Gene Zirkel’s “Unambiguous Notation”
The better part of three unquennia ago, our very own Gene Zirkel (Member 67z (79d),
a past Bulletin editor and president of the DSA, today a member of its board) observed
the base annotation syntaxes demonstrated in these and other programming languages.
He was inspired to write an article for the Bulletin titled “Unambiguous Notation
for Number Bases.”13 In it, he raised the issue of the ambiguity of the mainstream

13Gene Zirkel, “Unambiguous Notation for Number Bases,” Duodecimal Bulletin, Vol. 28z (32d),
No. 3, WN 48z (56d), Fall 1193z (1983d).
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subscript notation. He proposed an alternative: assign each base a unique single-letter
abbreviation, and use that as an annotation. In Zirkel’s formulation, the annotation
would be a prefix, with the value set off by bracketing apostrophes:

x'90' = z'100' = d'144' = o'220' = h'400' = b'1001,0000'
x'12.C' = z'16.9' = d'18.75' = o'22.6' = h'30.43' = b'1,0010.11'

Such a scheme is comprehensive, because it can accommodate a good number of
bases. It is equitable, because all bases are treated the same, with none singled out for
special consideration. It is relatively lightweight, because the annotation makes use
of characters readily available on the keyboard, and does not require any additional
fancy typesetting—although on the downside, couching every number in apostrophes
does add a bit of weight. It is also a very modular solution, because the annotations
only focus on specifying the base; within the bracketing apostrophes, the existing
syntax for numbers can reside, unaffected by the annotation. Finally, this notation is
unambiguous, because each annotation is a single letter uniquely associated with a
particular base, without itself requiring any interpretation as a numeral in some base.

(The choice of base abbreviations shown above will be explained in a moment.
They are slightly different than those which Zirkel selected in his original article.
Nevertheless, they demonstrate the principles that Zirkel was promoting.)

A New/Old Solution
Let’s revisit the mainstream subscript annotation solution. But instead of using
decimal numerals in the subscripts, suppose we substitute single-letter abbreviations
similar to those from Zirkel’s notation:

90x = 100z = 144d = 220o = 400h = 1001,0000b

12.Cx = 16.9z = 18.75d = 22.6o = 30.43h = 1,0010.11b

This seems to make for an ideal solution. It shares with Zirkel’s notation the traits
of being comprehensive, neutral, equitable, and unambiguous. It is light-weight and
modular: Subscripts such as these are fairly unobtrusive, interfering little with any
other aspect of numeric syntax, nor with any surrounding punctuation. We can
demonstrate this with our previous example sentences:

A gross, in decimal, is 144d; whereas in dozenal, it’s 100z.
A gross, in dozenal, is 100z; whereas in decimal, it’s 144d.

The subscript suffix position also avoids clashing with important unary functions, such
as negation (additive inverse, or the “minus” sign), which by convention are prefixes:

100z − 100x = −112d = −94z = −70x

Subscripts do require a bit of formatting effort. However, modern word processors,
typesetting software such as LATEX, as well as software supporting on-line blogs, wikis,
and forums, all readily provide the capability to do subscripts and superscripts.14

14This option is even available to people posting on the DozensOnline Forum. This author
has been using this convention there for months.
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the base annotation syntaxes demonstrated in these and other programming languages.
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13Gene Zirkel, “Unambiguous Notation for Number Bases,” Duodecimal Bulletin, Vol. 28z (32d),
No. 3, WN 48z (56d), Fall 1193z (1983d).
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subscript notation. He proposed an alternative: assign each base a unique single-letter
abbreviation, and use that as an annotation. In Zirkel’s formulation, the annotation
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bases. It is equitable, because all bases are treated the same, with none singled out for
special consideration. It is relatively lightweight, because the annotation makes use
of characters readily available on the keyboard, and does not require any additional
fancy typesetting—although on the downside, couching every number in apostrophes
does add a bit of weight. It is also a very modular solution, because the annotations
only focus on specifying the base; within the bracketing apostrophes, the existing
syntax for numbers can reside, unaffected by the annotation. Finally, this notation is
unambiguous, because each annotation is a single letter uniquely associated with a
particular base, without itself requiring any interpretation as a numeral in some base.

(The choice of base abbreviations shown above will be explained in a moment.
They are slightly different than those which Zirkel selected in his original article.
Nevertheless, they demonstrate the principles that Zirkel was promoting.)

A New/Old Solution
Let’s revisit the mainstream subscript annotation solution. But instead of using
decimal numerals in the subscripts, suppose we substitute single-letter abbreviations
similar to those from Zirkel’s notation:

90x = 100z = 144d = 220o = 400h = 1001,0000b

12.Cx = 16.9z = 18.75d = 22.6o = 30.43h = 1,0010.11b

This seems to make for an ideal solution. It shares with Zirkel’s notation the traits
of being comprehensive, neutral, equitable, and unambiguous. It is light-weight and
modular: Subscripts such as these are fairly unobtrusive, interfering little with any
other aspect of numeric syntax, nor with any surrounding punctuation. We can
demonstrate this with our previous example sentences:

A gross, in decimal, is 144d; whereas in dozenal, it’s 100z.
A gross, in dozenal, is 100z; whereas in decimal, it’s 144d.

The subscript suffix position also avoids clashing with important unary functions, such
as negation (additive inverse, or the “minus” sign), which by convention are prefixes:

100z − 100x = −112d = −94z = −70x

Subscripts do require a bit of formatting effort. However, modern word processors,
typesetting software such as LATEX, as well as software supporting on-line blogs, wikis,
and forums, all readily provide the capability to do subscripts and superscripts.14

14This option is even available to people posting on the DozensOnline Forum. This author
has been using this convention there for months.

July 11EEz (2015d) Page One Dozen Nine 19z



Annotations Base Names
Nominal Digital SDN Classical English Dozenal English

b 2 binal binary two two
t 3 trinal ternary three three
q 4 quadral quaternary four four
p 5 pental quinary five five
h 6 hexal senary six six
s 7 septal septenary seven seven
o 8 octal octal eight eight
e 9 enneal nonary nine nine
d A decial decimal ten ten
` B levial undecimal eleven eleven
z C unqual duodecimal twelve one dozen, dozenal

D ununial tridecimal thirteen one dozen one
E unbinal tetradecimal fourteen one dozen two
F untrinal pentadecimal fifteen one dozen three

x G unquadral hexadecimal sixteen one dozen four
H unpental heptadecimal seventeen one dozen five
I unhexal octadecimal eighteen one dozen six
J unseptal nonadecimal nineteen one dozen seven

v K unoctal vigesimal twenty one dozen eight
L unenneal unvigesimal twenty-one one dozen nine
M undecial duovigesimal twenty-two one dozen ten
N unlevial trivigesimal twenty-three one dozen eleven
O binilial tetravigesimal twenty-four two dozen
P biunial pentavigesimal twenty-five two dozen one
Q bibinal hexavigesimal twenty-six two dozen two
R bitrinal septavigesimal twenty-seven two dozen three
S biquadral octavigesimal twenty-eight two dozen four
T bipental nonavigesimal twenty-nine two dozen five
U bihexal trigesimal thirty two dozen six
V biseptal untrigesimal thirty-one two dozen seven
W bioctal duotrigesimal thirty-two two dozen eight
X bienneal tritrigesimal thirty-three two dozen nine
Y bidecial tetratrigesimal thirty-four two dozen ten
Z bilevial pentatrigesimal thirty-five two dozen eleven
Ω trinilial hexatrigesimal thirty-six three dozen

Table 1: “Nominal” and “Digital” Base Annotations

The best aspect of this scheme, however, may be its familiarity. It is a relatively
minor twist on a notation that mainstream mathematicians, along with many reasonably
educated people, are already quite familiar with. People not necessarily invested in
dozenalism might find it easier to accept and adopt this syntax.

“Nominal” and “Digital” Annotations
All that is needed is to settle on a suitable convention for single-letter abbreviations
for the bases. The first column in Table 1 specifies one possible standard, supporting
the previous examples. These are termed “nominal” base annotations, because these
single-letter abbreviations derive from names used for the bases.

For bases under one dozen, the abbreviations from Systematic Dozenal Nomencla-
ture15 are apropos, since the SDN digit roots were expressly designed to start with
unique letters that would be amenable to single-letter abbreviations. These include “d”
for decimal. The “z” for dozenal can be rationalized based on the fact that “zen,” as a
contraction for “dozen,” was historically favored both by F. Emerson Andrews and
by Tom Pendlebury. It can also be seen as a reference to the astrological Zodiac, the
dozen constellations along the ecliptic. The “x” for hexadecimal reflects the existing
convention in programming languages. The “v” for vigesimal is straightforward.

15John Volan, “Systematic Dozenal Nomenclature,” Duodecimal Bulletin, Vol. 51z (61d), No. 1,
WN X1z (121d), 11E9z (2013d). See also SDN Summary in this issue on page 31z.
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The second column specifies another possible standard, supporting the following:

90G = 100C = 144A = 2208 = 4006 = 1001,00002

12.CG = 16.9C = 18.75A = 22.68 = 30.436 = 1,0010.112

These are termed “digital” base annotations, because they systematically exploit the
character assignments for transdecimal digits typically used in modern programming
languages for (digital) computers. For any given base, the numbers and/or letters up
to but not including the base letter can act as the digits of that base. The base letter
is always one greater than its largest digit. For bases two through nine, the actual
digit characters suffice as base annotations, since they are not ambiguous in isolation.
Bases ten through two dozen eleven are represented by the letters A through Z of the
Latin 1 (English) alphabet. The Greek letter omega is included to represent base three
dozen, rounding out the set. That base must utilize all ten decimal numerals and all
two dozen two Latin 1 letters, in order to represent its digits.

As specified, the “nominal” annotations all use lowercase letters, while the “digital”
annotations all use uppercase. This contrast allows both types of annotation to coexist
without conflict. Users may employ whichever standard best suits their needs. The
lowercase nominal forms are a bit more pleasant on the eye, and more suggestive of the
names of the bases, so they might be good for frequent everyday usage. Whereas the
digital annotations, being more exhaustively comprehensive, might be better suited to
technical analyses about multiple number bases.

To Subscript or Not to Subscript
Subscripting might be problematic in certain disadvantaged environments, such as
when writing by hand, or in email or other impoverished forms of text communication.
In that case, a suitable inline syntax, utilizing the same annotation abbreviations,
might be able to substitute for subscript notation.

One possibility would look at how mainstream mathematicians have inlined sub-
scripts in other contexts. For instance, when a variable represents an array or set
of quantities, or a vector quantity, mathematicians often use a subscript as an index
referring to a specific element of the array, set, or vector. When subscripting is not
available, the substitute is often to suffix the variable with the index in brackets:

a0 = a[0], a1 = a[1], a2 = a[2], etc...

This syntax might also work as an inline substitute for base annotation subscripts:

90[x] = 100[z] = 144[d] = 220[o] = 400[h] = 1001,0000[b]
12.C[x] = 16.9[z] = 18.75[d] = 22.6[o] = 30.43[h] = 1,0010.11[b]

One way to rationalize this is to view these inlined annotations as parenthetical
remarks about the preceding values. Indeed, we could read these numerals off as
follows: “nine-zero (hexadecimal) equals one-zero-zero (dozenal) equals one-four-four
(decimal) ...” In fact, such a reading might be just as applicable to the fully typeset
subscript annotations. The suffix-subscript position is pretty much the “oh-by-the-way”
position in mathematical notation.
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Annotations Base Names
Nominal Digital SDN Classical English Dozenal English

b 2 binal binary two two
t 3 trinal ternary three three
q 4 quadral quaternary four four
p 5 pental quinary five five
h 6 hexal senary six six
s 7 septal septenary seven seven
o 8 octal octal eight eight
e 9 enneal nonary nine nine
d A decial decimal ten ten
` B levial undecimal eleven eleven
z C unqual duodecimal twelve one dozen, dozenal

D ununial tridecimal thirteen one dozen one
E unbinal tetradecimal fourteen one dozen two
F untrinal pentadecimal fifteen one dozen three

x G unquadral hexadecimal sixteen one dozen four
H unpental heptadecimal seventeen one dozen five
I unhexal octadecimal eighteen one dozen six
J unseptal nonadecimal nineteen one dozen seven

v K unoctal vigesimal twenty one dozen eight
L unenneal unvigesimal twenty-one one dozen nine
M undecial duovigesimal twenty-two one dozen ten
N unlevial trivigesimal twenty-three one dozen eleven
O binilial tetravigesimal twenty-four two dozen
P biunial pentavigesimal twenty-five two dozen one
Q bibinal hexavigesimal twenty-six two dozen two
R bitrinal septavigesimal twenty-seven two dozen three
S biquadral octavigesimal twenty-eight two dozen four
T bipental nonavigesimal twenty-nine two dozen five
U bihexal trigesimal thirty two dozen six
V biseptal untrigesimal thirty-one two dozen seven
W bioctal duotrigesimal thirty-two two dozen eight
X bienneal tritrigesimal thirty-three two dozen nine
Y bidecial tetratrigesimal thirty-four two dozen ten
Z bilevial pentatrigesimal thirty-five two dozen eleven
Ω trinilial hexatrigesimal thirty-six three dozen

Table 1: “Nominal” and “Digital” Base Annotations
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for the bases. The first column in Table 1 specifies one possible standard, supporting
the previous examples. These are termed “nominal” base annotations, because these
single-letter abbreviations derive from names used for the bases.

For bases under one dozen, the abbreviations from Systematic Dozenal Nomencla-
ture15 are apropos, since the SDN digit roots were expressly designed to start with
unique letters that would be amenable to single-letter abbreviations. These include “d”
for decimal. The “z” for dozenal can be rationalized based on the fact that “zen,” as a
contraction for “dozen,” was historically favored both by F. Emerson Andrews and
by Tom Pendlebury. It can also be seen as a reference to the astrological Zodiac, the
dozen constellations along the ecliptic. The “x” for hexadecimal reflects the existing
convention in programming languages. The “v” for vigesimal is straightforward.

15John Volan, “Systematic Dozenal Nomenclature,” Duodecimal Bulletin, Vol. 51z (61d), No. 1,
WN X1z (121d), 11E9z (2013d). See also SDN Summary in this issue on page 31z.
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dozen, rounding out the set. That base must utilize all ten decimal numerals and all
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without conflict. Users may employ whichever standard best suits their needs. The
lowercase nominal forms are a bit more pleasant on the eye, and more suggestive of the
names of the bases, so they might be good for frequent everyday usage. Whereas the
digital annotations, being more exhaustively comprehensive, might be better suited to
technical analyses about multiple number bases.

To Subscript or Not to Subscript
Subscripting might be problematic in certain disadvantaged environments, such as
when writing by hand, or in email or other impoverished forms of text communication.
In that case, a suitable inline syntax, utilizing the same annotation abbreviations,
might be able to substitute for subscript notation.

One possibility would look at how mainstream mathematicians have inlined sub-
scripts in other contexts. For instance, when a variable represents an array or set
of quantities, or a vector quantity, mathematicians often use a subscript as an index
referring to a specific element of the array, set, or vector. When subscripting is not
available, the substitute is often to suffix the variable with the index in brackets:

a0 = a[0], a1 = a[1], a2 = a[2], etc...

This syntax might also work as an inline substitute for base annotation subscripts:

90[x] = 100[z] = 144[d] = 220[o] = 400[h] = 1001,0000[b]
12.C[x] = 16.9[z] = 18.75[d] = 22.6[o] = 30.43[h] = 1,0010.11[b]

One way to rationalize this is to view these inlined annotations as parenthetical
remarks about the preceding values. Indeed, we could read these numerals off as
follows: “nine-zero (hexadecimal) equals one-zero-zero (dozenal) equals one-four-four
(decimal) ...” In fact, such a reading might be just as applicable to the fully typeset
subscript annotations. The suffix-subscript position is pretty much the “oh-by-the-way”
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The First Few Squares

N N2 N N2

[d] [z] [x] [d] [z] [x] [d] [z] [x] [d] [z] [x]
1 1 1 1 1 1 13 11 D 169 121 A9
2 2 2 4 4 4 14 12 E 196 144 C4
3 3 3 9 9 9 15 13 F 225 169 E1
4 4 4 16 14 10 16 14 10 256 194 100
5 5 5 25 21 19 17 15 11 289 201 121
6 6 6 36 30 24 18 16 12 324 230 144
7 7 7 49 41 31 19 17 13 361 261 169
8 8 8 64 54 40 20 18 14 400 294 190
9 9 9 81 69 51 21 19 15 441 309 1B9
10 X A 100 84 64 22 1X 16 484 344 1E4
11 E B 121 X1 79 23 1E 17 529 381 211
12 10 C 144 100 90 24 20 18 576 400 240

Table 2: Example table with blanket column-wise base annotations

Inline bracketed suffixes manage to remain about as unobtrusive as suffixed sub-
scripts. For instance, they avoid interfering with unary operators in prefix position:

100[z]− 100[x] = −112[d] = −94[z] = −70[x]

Moreover, bracketing the base abbreviations in this way might also make for convenient
stand-alone tags useful as blanket annotations for whole regions of text. For instance,
we could use them in table headers to annotate the bases for entire rows or columns of
a table. This would allow us to avoid having to annotate each cell individually, making
the table less cluttered overall, yet not shirking the obligation to explicitly specify the
base in use at every point. Table 2 provides an example demonstrating this.

International Neutrality
Thus far, we have been presuming the Anglo-American convention for punctuating
numbers, in which the period is used as the fraction point, and the comma is used as
a grouping separator in long numbers:

(
236 + 2−12)

d = 68,719,476,736.000 244 140 625d(
230 + 2−10)

z = 11,39X,01E,854.000 509z

On the continent of Europe, and elsewhere, the convention is the exact opposite:
(
236 + 2−12)

d = 68.719.476.736,000 244 140 625d(
230 + 2−10)

z = 11.39X.01E.854,000 509z

Since the subscripted annotations proposed here provide a modular solution, they are
completely independent of these considerations. So Continentals could readily adopt
the same base annotations, while retaining their preferred punctuation.

A solution such as this, compatible with the local standards of other nations
regarding number format, is much more likely to gain international acceptance than

20z Page Two Dozen The Duodecimal Bulletin

one that usurps their preferences. Even though the Humphrey point disrupts Ameri-
can/British standards as much as it does Continental standards, nevertheless there
can be a perception that it constitutes a veiled attempt to impose Anglophile cultural
hegemony. Base annotation should simply be a question of what is most practical. We
should prefer a solution that avoids seeming political.

“Why Change?”16

Dozenalists are people who wish to bring the use of base twelve into the mainstream,
because it is demonstrably a better base than decimal. As such, it would behoove us
to do as much as possible to demonstrate how normal base twelve can be, how little
people really need to change in order to make use of it.

It is therefore a great irony to see the earliest proponents of dozenalism in this
country actually accepting—indeed, vigorously embracing—practices better geared to
emphasize decimal as the “normal” or “default” base, and dozenal as a base set apart
as “marked” and “different” and “peculiar”—and by implication, “second-rate”.

In this author’s opinion, the Humphrey point was a chief culprit. Yet today, it has
become something of a cherished tradition within the dozenal societies, with roots
spanning more than a human lifespan. Perhaps the foregoing has persuaded the reader
to reconsider whether this was really a good thing. The Humphrey point should not
persist merely for the sake of nostalgia.

The alternative set forth in these pages also has roots that go back at least as far,
if not further. Its elements have been present since the founding of the DSA, and
aspects of it have been touched at by contributors to this publication, at various times
throughout its history.

The DSA has made major changes in the past, notably the adoption of the “Bell”
characters as transdecimal digits, and later the abandoning of these to return to the
Dwiggins characters. So it is not impossible to decide to change something seemingly
fundamental, upon better judgment.

Going into a new biquennium, we should opt for a solution for base annotation that
is more neutral, equitable, modular, and versatile, than the Humphrey point. We need
a technique that marks all bases equally, without clashing with mainstream standards
of mathematical notation and prose style—indeed, one that derives from, and extends
upon, mainstream practices. A convention assigning single-character alphanumeric
abbreviations to bases, with handy, and generally-familiar, places to position these,
can satisfy these goals.

16Title of an editorial essay by Ralph H. Beard, first editor of the Bulletin. First published in
Duodecimal Bulletin, Vol. 4, No. 1, WN Ez (11d), Dec 1164z (1948d). Remastered in 11E7z (2011d)
by Michael T. De Vlieger as http://www.dozenal.org/drupal/sites/default/files/db043r2_0.pdf.
Quote: “Then, shouldn’t we change? No! No change should be made and we urge no change. All
the world uses decimals. But people of understanding should learn to use duodecimals to facilitate
their thinking, and to ease the valuative processes of their minds. Duodecimals should be man’s
second mathematical language. They should be taught in all the schools. In any operation, that
base should be used which is most advantageous, and best suited to the work involved. We expect
that duodecimals will progressively earn their way into general popularity. But no change should
be made. Perhaps by the year 2000, or maybe by 1200, which is 14 years later, duodecimals may
be the more popular base. But then no change need be made, because people will already be using
the better base.” (Original italic marking of dozenal numbers retained.)
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stand-alone tags useful as blanket annotations for whole regions of text. For instance,
we could use them in table headers to annotate the bases for entire rows or columns of
a table. This would allow us to avoid having to annotate each cell individually, making
the table less cluttered overall, yet not shirking the obligation to explicitly specify the
base in use at every point. Table 2 provides an example demonstrating this.
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a grouping separator in long numbers:
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should prefer a solution that avoids seeming political.

“Why Change?”16

Dozenalists are people who wish to bring the use of base twelve into the mainstream,
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to do as much as possible to demonstrate how normal base twelve can be, how little
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It is therefore a great irony to see the earliest proponents of dozenalism in this
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emphasize decimal as the “normal” or “default” base, and dozenal as a base set apart
as “marked” and “different” and “peculiar”—and by implication, “second-rate”.

In this author’s opinion, the Humphrey point was a chief culprit. Yet today, it has
become something of a cherished tradition within the dozenal societies, with roots
spanning more than a human lifespan. Perhaps the foregoing has persuaded the reader
to reconsider whether this was really a good thing. The Humphrey point should not
persist merely for the sake of nostalgia.
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